
The Akamai Network: A Platform for High-Performance
Internet Applications

Erik Nygren† Ramesh K. Sitaraman†‡ Jennifer Sun†

†Akamai Technologies, 8 Cambridge Center, Cambridge, MA 02142
{nygren, ramesh}@akamai.com, jennifer_sun@post.harvard.edu

‡Department of Computer Science, University of Massachusetts, Amherst, MA 01002
ramesh@cs.umass.edu

ABSTRACT
Comprising more than 61,000 servers located across nearly 1,000
networks in 70 countries worldwide, the Akamai platform delivers
hundreds of billions of Internet interactions daily, helping
thousands of enterprises boost the performance and reliability of
their Internet applications. In this paper, we give an overview of
the components and capabilities of this large-scale distributed
computing platform, and offer some insight into its architecture,
design principles, operation, and management.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed networks
C.2.4 [Distributed Systems]: Distributed applications, Network
operating systems

General Terms
Algorithms, Management, Performance, Design, Reliability,
Security, Fault Tolerance.

Keywords
Akamai, CDN, overlay networks, application acceleration, HTTP,
DNS, content delivery, quality of service, streaming media

1. INTRODUCTION
The Internet is radically transforming every aspect of human
society by enabling a wide range of applications for business,
commerce, entertainment, news, and social networking. Yet the
Internet was never architected to support the levels of
performance, reliability, and scalability that modern-day
commercial applications demand, creating significant technical
obstacles for those who wish to transact business on the Web.
Moreover, these obstacles are becoming even more challenging as
current and future applications are evolving.
Akamai first pioneered the concept of Content Delivery Networks
(CDNs) [18] more than a decade ago to help businesses overcome
these technical hurdles. Since then, both the Web and the Akamai
platform have evolved tremendously. Today, Akamai delivers 15-
20% of all Web traffic worldwide and provides a broad range of
commercial services beyond content delivery, including Web and
IP application acceleration, EdgeComputing™, delivery of live
and on-demand high-definition (HD) media, high-availability
storage, analytics, and authoritative DNS services.

This paper presents a broad overview of the current Akamai
platform, including a discussion of many of the key technologies

and architectural approaches used to achieve its results. We hope
to offer insight into the richness of the platform and the breadth of
technological research and innovation needed to make a system of
this scale work.
The paper is organized as follows. We first present the problem
space and look at the motivations for creating such a platform.
Next, an overview of the Akamai platform is followed by an
examination of how it overcomes the Internet’s inherent
limitations for delivering web content, media streams, and
dynamic applications. We present the case that a highly
distributed network is the most effective architecture for these
purposes, particularly as content becomes more interactive and
more bandwidth hungry. We then take a more detailed look at the
main components of the Akamai platform, with a focus on its
design principles and fault tolerant architecture. Finally, we offer
a cross-section of customer results to validate the real-world
efficacy of the platform.

2. INTERNET APPLICATION
REQUIREMENTS
Modern enterprise applications and services on the Internet
require rigorous end-to-end system quality, as even small
degradations in performance and reliability can have a
considerable business impact. A single one-hour outage can cost a
large e-commerce site hundreds of thousands to millions of
dollars in lost revenue, for example.1 In addition, outages can
cause significant damage to brand reputation. The cost of
enterprise application downtime is comparable, and may be
measured in terms of both lost revenue and reduced productivity.
Application performance is also directly tied to key business
metrics such as application adoption and site conversion rates. A
2009 Forrester Consulting survey found that a majority of online
shoppers cited website performance as an important factor in their
online store loyalty, and that 40% of consumers will wait no more
than 3 seconds for a page to load before abandoning a site [19].
We can find a more concrete quantification of this effect in an
Akamai study on an e-commerce website [11]. In the study, site
visitors were partitioned: half were directed to the site through
Akamai (providing a high-performance experience) while the
other half were sent directly to the site’s origin servers. Analysis
showed that the users on the high-performance site were 15%

1 For instance, a one-hour outage could cost one well-known,

large online retailer $2.8 million in sales, based on 2009
revenue numbers.

2

more likely to complete a purchase and 9% less likely to abandon
the site after viewing just one page. For B2B applications, the
story is similar. In a 2009 IDC survey, customers using Akamai’s
enterprise application acceleration services reported annual
revenue increases of $200,000 to over $3 million directly
attributable to the improved performance and reliability of their
applications [20].
Unfortunately, inherent limitations in the Internet’s architecture
make it difficult to achieve desired levels of performance natively
on the Internet. Designed as a best-effort network, the Internet
provides no guarantees on end-to-end reliability or performance.
On the contrary, wide-area Internet communications are subject to
a number of bottlenecks that adversely impact performance,
including latency, packet loss, network outages, inefficient
protocols, and inter-network friction.
In addition, there are serious questions as to whether the Internet
can scale to accommodate the demands of online video. Even
short term projections show required capacity levels that are an
order of magnitude greater than what we see on the Internet today.
Distributing HD-quality programming to a global audience
requires tens of petabits per second of capacity—an increase of
several orders of magnitude.
Bridging the technological gap between the limited capabilities of
the Internet’s infrastructure and the performance requirements of
current and future distributed applications is thus critical to the
continued growth and success of the Internet and its viability for
business. We now take a closer look at why this is so challenging.

3. INTERNET DELIVERY CHALLENGES
Although often referred to as a single entity, the Internet is
actually composed of thousands of different networks, each
providing access to a small percentage of end users.2 Even the
largest network has only about 5% of Internet access traffic, and
percentages drop off sharply from there (see Figure 1). In fact, it
takes well over 650 networks to reach 90% of all access traffic.
This means that centrally-hosted content must travel over multiple
networks to reach its end users.
Unfortunately, inter-network data communication is neither an
efficient nor reliable operation and can be adversely affected by a
number of factors. The most significant include:

 Peering point congestion. Capacity at peering points where
networks exchange traffic typically lags demand, due in large
part to the economic structure of the Internet. Money flows
in at the first mile (i.e., website hosting) and at the last mile
(i.e., end users), spurring investment in first and last mile
infrastructure. However, there is little economic incentive for
networks to invest in the middle mile—the high-cost, zero-
revenue peering points where networks are forced to
cooperate with competing entities. These peering points thus
become bottlenecks that cause packet loss and increase
latency.

2 According to [13], there were over 34,600 active networks

(ASes) as of June 2010.

Figure 1: Percentage of access traffic from top networks

 Inefficient routing protocols. Although it has managed
admirably for scaling a best-effort Internet, BGP has a
number of well-documented limitations. It was never
designed for performance: BGP bases its route calculations
primarily on AS hop count, knowing nothing about the
topologies, latencies, or real-time congestion of the
underlying networks. In practice, it is used primarily to
enforce networks’ business agreements with each other rather
than to provide good end-to-end performance. For example,
[34] notes that several paths between locations within Asia
are actually routed through peering points in the US, greatly
increasing latency. In addition, when routes stop working or
connectivity degrades, BGP can be slow to converge on new
routes. Finally, it is well-known that BGP is vulnerable to
human error as well as foul play; misconfigured or hijacked
routes can quickly propagate throughout the Internet, causing
route flapping, bloated paths, and even broad connectivity
outages [25].

 Unreliable networks. Across the Internet, outages are
happening all the time, caused by a wide variety of reasons—
cable cuts, misconfigured routers, DDoS attacks, power
outages, even earthquakes and other natural disasters. While
failures vary in scope, large-scale occurrences are not
uncommon. In January 2008, for example, parts of Southeast
Asia and the Middle East experienced an estimated 75%
reduction in bandwidth connectivity [43] when a series of
undersea cables were accidentally cut. In December of the
same year, another cable cut incident lead to outages for
large numbers of networks in Egypt and India. In both cases
the disruptions lasted for multiple days.
Fragile peering relationships can be culprits as well. When
two networks de-peer over business disputes, they can
partition the Internet, such that customers from one
network—as well as any networks single-homed to it—may
be unable to reach customers of the other network. During
the high-profile de-peering between Sprint and Cogent in
October 2008, for instance, connectivity was adversely
affected for an estimated 3,500 networks [35].

3

Finally, several high profile examples of Internet outages
caused by BGP hijacking can be found in [9], such as the
global YouTube blackout inadvertently caused by Pakistan in
February 2008, as well as the widespread Internet outage
caused by a China Telecom leak in April 2010.

 Inefficient communications protocols: Although it was
designed for reliability and congestion-avoidance, TCP
carries significant overhead and can have suboptimal
performance for links with high latency or packet loss, both
of which are common across the wide-area Internet. Middle
mile congestion exacerbates the problem, as packet loss
triggers TCP retransmissions, further slowing down
communications.
Additionally, for interactive applications, the multiple round
trips required for HTTP requests can quickly add up,
affecting application performance [41][40]. Most web
browser also limit the number of parallel connections they
make for a given host name, further limiting performance
over long distances for sites that consist of many objects.
TCP also becomes a serious performance bottleneck for
video and other large files. Because it requires receiver
acknowledgements for every window of data packets sent,
throughput (when using standard TCP) is inversely related to
network latency or round trip time (RTT). Thus, the distance
between server and end user can become the overriding
bottleneck in download speeds and video viewing quality.
Table 1 illustrates the stark results of this effect. True HD
quality streams, for example, are not possible if the server is
not relatively close by.

Table 1: Effect of Distance on Throughput and Download Time

Distance
(Server to User)

Network
RTT

Typical
Packet
Loss Throughput

4GB DVD
Download
Time

Local:
<100 mi. 1.6 ms 0.6%

44 Mbps
(high quality
HDTV) 12 min.

Regional:
500–1,000 mi. 16 ms 0.7%

4 Mbps
(basic
HDTV) 2.2 hrs.

Cross-continent:
~3,000 mi. 48 ms 1.0%

1 Mbps (SD
TV) 8.2 hrs.

Multi-continent:
~6,000 mi. 96 ms 1.4%

0.4 Mbps
(poor) 20 hrs

Although many alternate protocols and performance
enhancements to TCP have been proposed in the literature
([23], [30], [45]), these tend to be very slow to make their
way into use by real-world end users, as achieving common
implementation across the Internet is a formidable task.

 Scalability. Scaling Internet applications means having
enough resources available to respond to instantaneous
demand, whether during planned events or unexpected
periods of peak traffic. Scaling and mirroring origin
infrastructure is costly and time-consuming, and it is difficult
to predict capacity needs in advance. Unfortunately,
underprovisioning means potentially losing business while
overprovisioning means wasting money on unused
infrastructure. Moreover, website demand is often very spiky,
meaning that companies traditionally needed to provision for

anomalous peaks like promotions, events, and attacks,
investing in significant infrastructure that sits underutilized
most of the time. This also has an environmental cost when
underutilized infrastructure consumes significant amounts of
power [33].
Finally, it is important to note that origin scalability is only a
part of the scalability challenge. End-to-end application
scalability means not only ensuring that there is adequate
origin server capacity, but also adequate network bandwidth
available at all points between end users and the applications
they are trying to access. As we will discuss further in
Section 5.1, this is a serious problem as Internet video comes
of age.

 Application limitations and slow rate of change adoption.
Although some of the challenges the Internet faces can be
partially addressed by changes to protocols and/or client
software, history shows that these are all slow to change.
While enterprises want to provide the best performance to
their end users, they often have little or no control over the
end users’ software. While the benefits of some protocol
changes can be seen as soon as some clients and servers
adopt them, other proposed changes can be infeasible to
implement as they require close to 100% client adoption to
avoid breaking older clients. Most enterprises would also
prefer to not to have to keep up with adapting their web
infrastructure to tune performance of all of the heterogeneous
client software in-use. For example, Microsoft’s Internet
Explorer 6 (which has considerably slower performance than
later versions and doesn’t work reliably with protocol
optimizations such as gzip compression) was still one of the
most popular browsers in use in December 2009, despite
being introduced more than eight years prior [29].

4. DELIVERY NETWORK OVERVIEW
The Internet delivery challenges posed above (and in more detail
in [27]) illustrate how difficult it can be for enterprises to achieve
acceptable levels of performance, reliability, and cost-effective
scalability in their Web operations. Most of the bottlenecks are
outside the control of any given entity and are inherent to the way
the Internet works—as a loosely-coordinated patchwork of
heterogeneous autonomous networks.
Over a decade ago, Akamai introduced the Content Delivery
Network (CDN) concept to address these challenges. Originally,
CDNs improved website performance by caching static site
content at the edge of the Internet, close to end users, in order to
avoid middle mile bottlenecks as much as possible. Since then the
technology has rapidly evolved beyond static web content
delivery. Today, Akamai has application delivery networks that
can accelerate entire web or IP-based applications, media delivery
networks that provide HD-quality delivery of live and on-demand
media, and EdgeComputing networks that deploy and execute
entire Java J2EE applications in a distributed fashion.
In addition, service offerings have matured to meet additional
enterprise needs, such as the ability to maintain visibility and
control over their content across the distributed network. This
means providing robust security, logging, SLAs, diagnostics,
reporting and analytics, and management tools. Here, as with the
content delivery itself, there are challenges of scale, reliability,
and performance to be overcome.

4

4.1 Delivery Networks as Virtual Networks
Conceptually, a delivery network is a virtual network3 built as a
software layer over the actual Internet, deployed on widely
distributed hardware, and tailored to meet the specific systems
requirements of distributed applications and services [Figure 2]. A
delivery network provides enhanced reliability, performance,
scalability and security that is not achievable by directly utilizing
the underlying Internet. A CDN, in the traditional sense of
delivering static Web content, is one type of delivery network.
A different but complimentary approach to addressing challenges
facing Internet applications is a clean-slate redesign of the Internet
[32]. While a re-architecture of the Internet might be beneficial,
its adoption in the real world is far from guaranteed. With
hundreds of billions of dollars in sunk investments and entrenched
adoption by tens of thousands of entities, the current Internet
architecture will change slowly, if at all. For example, consider
that IPv6—a needed incremental change—was first proposed in
1996 but is just beginning to ramp up in actual deployment nearly
15 years later.
The beauty of the virtual network approach is that it works over
the existing Internet as-is, requiring no client software and no
changes to the underlying networks. And, since it is built almost
entirely in software, it can easily be adapted to future
requirements as the Internet evolves.

Figure 2: A delivery network is a virtual network built as a
software layer over the Internet that is deployed on widely
distributed hardware.

3 The concept of building a virtual network in software to make

the underlying network more reliable or higher-performing has a
long history both in parallel ([28], [40]) and distributed
networks [6].

4.2 Anatomy of a Delivery Network
The Akamai network is a very large distributed system consisting
of tens of thousands of globally deployed servers that run
sophisticated algorithms to enable the delivery of highly scalable
distributed applications. We can think of it as being comprised of
multiple delivery networks, each tailored to a different type of
content—for example, static web content, streaming media, or
dynamic applications. At a high level, these delivery networks
share a similar architecture, which is shown in Figure 3, but the
underlying technology and implementation of each system
component may differ in order to best suit the specific type of
content, streaming media, or application being delivered.
The main components of Akamai’s delivery networks are as
follows:

 When the user types a URL into his/her browser, the domain
name of the URL is translated by the mapping system into
the IP address of an edge server to serve the content (arrow
1). To assign the user to a server, the mapping system bases
its answers on large amounts of historical and current data
that have been collected and processed regarding global
network and server conditions. This data is used to choose an
edge server that is located close to the end user.

 Each edge server is part of the edge server platform, a large
global deployment of servers located in thousands of sites
around the world. These servers are responsible for
processing requests from nearby users and serving the
requested content (arrow 2).

 In order to respond to a request from a user, the edge server
may need to request content from an origin server.4 For
instance, dynamic content on a web page that is customized
for each user cannot be entirely cached by the edge platform
and must be fetched from the origin. The transport system is
used to download the required data in a reliable and efficient
manner. More generally, the transport system is responsible
for moving data and content over the long-haul Internet with
high reliability and performance. In many cases, the transport
system may also cache static content.

 The communications and control system is used for
disseminating status information, control messages, and
configuration updates in a fault-tolerant and timely fashion.

 The data collection and analysis system is responsible for
collecting and processing data from various sources such as
server logs, client logs, and network and server information.
The collected data can be used for monitoring, alerting,
analytics, reporting, and billing.

 Finally, the management portal serves two functions. First, it
provides a configuration management platform that allows an
enterprise customer to retain fine-grained control how their
content and applications are served to the end user. These

4 The origin includes the backend web servers, application

servers, and databases that host the web application, and is often
owned and controlled by the content or application provider
rather than the operator of the delivery network. In the case of
streaming media, the origin includes facilities for video capture
and encoding of live events, as well as storage facilities for on-
demand media.

5

configurations are updated across the edge platform from the
management portal via the communications and control
system. In addition, the management portal provides the
enterprise with visibility on how their users are interacting
with their applications and content, including reports on
audience demographics and traffic metrics.

While all of Akamai’s delivery networks incorporate the systems
outlined above, the specific design of each system is influenced by
application requirements. For instance, the transport system of an
application delivery network will have a different set of
requirements and a different architecture than that of a content
delivery network. We will look at each of these system
components in more detail in the upcoming sections.

Figure 3: System components of a delivery network. To
understand how these components interact, it is instructive to
walk through a simple example of a user attempting to
download a web page through the Akamai network.

4.3 System Design Principles
The complexity of a globally distributed delivery network brings
about a unique set of challenges in architecture, operation and
management—particularly in an environment as heterogeneous
and unpredictable as the Internet. For example, network
management and data collection needs to be scalable and fast
across thousands of server clusters, many of which are located in
unmanned, third-party data centers, and any number of which
might be offline or experiencing bad connectivity at any given
time. Configuration changes and software updates need to be
rolled out across the network in a safe, quick, and consistent
manner, without disrupting service. Enterprises also must be able
to maintain visibility and fine-grained control over their content
across the distributed platform.

To guide our design choices, we begin with the assumption that a
significant number of failures (whether they be at the machine,
rack, cluster, connectivity, network levels) is expected to be
occurring at all times in the network. Indeed, while not standard
in system design, this assumption seems natural in the context of
the Internet. We have seen many reasons that Internet failures can
occur in Section 3, and have observed it to be true empirically
within our own network.
What this means is that we have designed our delivery networks
with the philosophy that failures are normal and the delivery
network must operate seamlessly despite them. Much effort is
invested in designing recovery from all types of faults, including
multiple concurrent faults.
This philosophy guides every level of design decision—down to
the choice of which types of servers to buy: the use of robust
commodity servers makes more sense in this context than more
expensive servers with significant hardware redundancy. While it
is still important to be able to immediately identify failing
hardware (e.g., via ECC memory and disk integrity checks that
enable servers to automatically take themselves out of service),
there are diminishing returns from building redundancy into
hardware (e.g, dual power supplies) rather than software. Deeper
implications of this philosophy are discussed at length in [1].
We now mention a few key principles that pervade our platform
system design:

 Design for reliability. Because of the nature of our business,
the goal is to attain extremely close to 100% end-to-end
availability. This requires significant effort given our
fundamental assumption that components will fail frequently
and in unpredictable ways. We must ensure full redundancy
of components (no single points of failure), build in multiple
levels of fault tolerance, and use protocols such as PAXOS
[26] and decentralized leader election to accommodate for
the possibility of failed system components.

 Design for scalability. With more than 60,000 machines
(and growing) across the globe, all platform components
must be highly scalable. At a basic level, scaling means
handling more traffic, content, and customers. This also
translates into handling increasingly large volumes of
resulting data that must be collected and analyzed, as well as
building communications, control, and mapping systems that
must support an ever-increasing number of distributed
machines.

 Limit the necessity for human management. To a very
large extent, we design the system to be autonomic. This is a
corollary to the philosophy that failures are commonplace
and that the system must be designed to operate in spite of
them. Moreover, it is necessary in order to scale, else the
human operational expense becomes too high. As such, the
system must be able to respond to faults, handle shifts in load
and capacity, self-tune for performance, and safely deploy
software and configuration updates with minimal human
intervention. (To manage its 60,000-plus machines, the
Akamai network operation centers currently employ around
60 people, distributed to work 24x7x365.)

 Design for performance. There is continual work being
done to improve the performance of the system’s critical
paths, not only from the perspective of improving end user

6

response times but for many different metrics across the
platform, such as cache hit rates and network resource
utilization. An added benefit to some of this work is energy
efficiency; for example, kernel and other software
optimizations enable greater capacity and more traffic served
with fewer machines.

We will explore these principles further as we examine each of the
the Akamai delivery networks in greater detail in the next
sections. In Section 5 and Section 6 we outline specific challenges
and solutions in the design of content, streaming media, and
application delivery networks, and look at the characteristics of
the transport systems, which differ for each of the delivery
networks.5 In Section 7, we provide details on the generic system
components that are shared among the Akamai delivery networks,
such as the edge server platform, the mapping system, the
communications and control system, and the data collection and
analysis system.

5. HIGH-PERFORMANCE STREAMING
AND CONTENT DELIVERY NETWORKS
In this section, we focus on the architectural considerations of
delivery networks for web content and streaming media. A
fundamental principle for enhancing performance, reliability, and
scalability for content and stream delivery is minimizing long-
haul communication through the middle-mile bottleneck of the
Internet—a goal made feasible only by a pervasive, distributed
architecture where servers sit as “close” to end users as possible.
Here, closeness may be defined in both geographic and network-
topological measures; the ideal situation (from a user performance
perspective) would consist of servers located within each user’s
own ISP and geography, thus minimizing the reliance on inter-
network and long-distance communications.6
A key question is just how distributed such an architecture needs
to be. Akamai’s approach generally has been to reach out to the
true edge of the Internet, deploying not only in large Tier 1 and
Tier 2 data centers, but also in large numbers of end user ISPs.
Rather than taking the approach of deploying massive server
farms in a few dozen data centers, Akamai has deployed server
clusters of varying size in thousands of locations—an approach
that arguably adds complexity to system design and management.
However, we made this architectural choice as we feel that it is
the one that has the most efficacy.
Internet access traffic is highly fragmented across networks—the
top 45 networks combined account for only half of user access
traffic, and the numbers drop off dramatically from there. This
means that unless a CDN is deployed in thousands of networks, a
large percentage of traffic being served would still need to travel
over multiple networks to reach end users. Being deployed in
local ISPs is particularly critical for regions of the world with
poor connectivity. More importantly, as we saw in Section 3,

5 The transport systems do share services and components, but are

tailored to meet the requirements of the different types of
applications they support.

6 When long-haul communication is unavoidable, as in the case of
cold content or live streaming, the transport system is
architected to ensure that these communications happen with
high reliability and performance.

Table 1, because of the way TCP works, the distance between
server and end user becomes a bottleneck for video throughput. If
a CDN has only a few dozen server locations, the majority of
users around the world would be unable to enjoy the high quality
video streams their last mile broadband access would otherwise
allow. Finally, being highly distributed also increases platform
availability, as an outage across an entire data center (or even
multiple data centers) does not need to affect delivery network
performance.
For these reasons, Akamai’s approach is to deploy servers as close
to end users as possible, minimizing the effects of peering point
congestion, latency, and network outages when delivering
content. As a result, customers enjoy levels of reliability and
performance that are not possible with more centralized
approaches.
Finally, while peer-to-peer technologies [8] provide a highly-
distributed option for serving static web content, the lack of
management and control features in current implementations
make them unsuitable as stand-alone solutions for enterprise-
quality delivery. Akamai’s enterprise customers treat the Akamai
network as an extension of their own, in the sense that they expect
to maintain control and visibility over their content across the
network. This includes management of content freshness and
correctness, fine-grained control over how different content is
handled, the ability to view real-time analytics and traffic reports,
and guarantees of security (including integrity, availability, and
confidentiality). These capabilities are as critical to enterprise
business requirements as the performance benefits themselves.
The lack thereof limits the applicability of peer-to-peer content
delivery solutions for most enterprise customers, although Akamai
does provide a hybrid option for client-side delivery, discussed
more in Section 7.5.5.

5.1 Video-grade Scalability
In addition to speed and reliability, highly distributed network
architectures provide another critical advantage—that of end-to-
end scalability. One goal of most CDNs, including Akamai, is to
provide scalability for their customers by allowing them to
leverage a larger network on-demand. This reduces the pressure
on content providers to accurately predict capacity needs and
enables them to gracefully absorb spikes in website demand. It
also creates sizeable savings in capital and operational expenses,
as sites no longer have to build out a large origin infrastructure
that may sit underutilized except during popular events.
With high-throughput video, however, scalability requirements
have reached new orders of magnitude. From near non-existence
less than a decade ago, video now constitutes more than a third of
all Internet traffic, and Cisco [14] predicts that by 2014, the
percentage will increase to over 90%. Just five years old,
YouTube recently announced [47] that it now receives 2 billion
views per day. In addition to an increase in the number of viewers,
the bitrates of streams have also been increasing significantly to
support higher qualities. While video streams in the past (often
displayed in small windows and watched for short periods of
time) were often a few hundred Kbps, today SDTV- and HDTV-
quality streams ranging between 2 to 40 Mbps are becoming
prevalent as viewers watch up to full-length movies in full-screen
or from set-top devices.

7

What does this combination of increased viewership, increased
bitrates, and increased viewing-duration mean in terms of capacity
requirements? President Obama’s inauguration set records in
2009, with Akamai serving over 7 million simultaneous streams
and seeing overall traffic levels surpassing 2 Tbps. Demand
continues to rise quickly, spurred by continual increase in
broadband speed and penetration rates [10]. In April 2010,
Akamai hit a new record peak of 3.45 Tbps on its network. At this
throughput, the entire printed contents of the U.S. Library of
Congress could be downloaded in under a minute. In comparison,
Steve Jobs’ 2001 Macworld Expo keynote, a record-setting
streaming event at the time, peaked at approximately 35,500
simultaneous users and 5.3 Gbps of bandwidth—several orders of
magnitude less.
In the near term (two to five years), it is reasonable to expect that
throughput requirements for some single video events will reach
roughly 50 to 100 Tbps (the equivalent of distributing a TV-
quality stream to a large prime time audience). This is an order of
magnitude larger than the biggest online events today. The
functionality of video events has also been increasing to include
such features as DVR-like-functionality (where some clients may
pause or rewind), interactivity, advertisement insertion, and
mobile device support.
At this scale, it is no longer sufficient to simply have enough
server and egress bandwidth resources. One must consider the
throughput of the entire path from encoders to servers to end
users. The bottleneck is no longer likely to be at just the origin
data center. It could be at a peering point, or a network’s backhaul
capacity, or an ISP’s upstream connectivity—or it could be due to
the network latency between server and end user, as discussed
earlier in Section 3. At video scale, a data center’s nominal egress
capacity has very little to do with its real throughput to end users.
Because of the limited capacity at the Internet’s various
bottlenecks, even an extremely well-provisioned and well-
connected data center can only expect to have no more than a few
hundred Gbps of real throughput to end users. This means that a
CDN or other network with even 50 well-provisioned, highly
connected data centers still falls well short of achieving the 100
Tbps needed to support video’s near-term growth.
On the other hand, an edge-based platform, with servers in
thousands of locations, can achieve the scale needed with each
location supporting just tens of Gbps of output. This reinforces
the efficacy of a highly distributed architecture for achieving
enterprise-grade performance, reliability, and scalability,
particularly in the upcoming era where video will dominate
bandwidth usage.
It is also worth noting that IP-layer multicast [16] (proposed early
on as a solution for handling large streaming events) tends to not
be practical in reality, both due to challenges in supporting within
backbone routers without introducing security vulnerabilities, and
due to an increasing set of required features such as content access
control and time-shifting. This has resulted in the implementation
of application-layer multicast services, as we describe in Section
5.3.2. For the drawbacks of IP-layer multicast, the reader is
further referred to [12].

5.2 Streaming Performance
A web application is said to perform well if pages download
quickly without errors. However, streaming performance is more

multi-dimensional and complex. Akamai’s research on how users
experience streaming media has lead to the definition and
measurement of several key metrics. A first metric is stream
availability that measures how often a user can play streams
without failures. Next, since users want the stream to start quickly,
it is important to minimize startup time. Additionally, users want
to watch the stream without interruptions or freezes. Therefore, a
third metric measures the frequency and duration of interruptions
during playback. Finally, users want to experience the media at
the highest bitrate that their last-mile connectivity, desktop, or
device would allow. Thus, a final important metric is the effective
bandwidth delivered to the user. A major design goal of
Akamai’s stream delivery network is to optimize these metrics to
provide users a high-quality experience. In addition to the key
metrics above, a number of auxiliary metrics such as packet loss,
jitter, frame loss, RTT, and end-to-end delay are optimized.
Akamai has built and deployed a global monitoring infrastructure
that is capable of measuring stream quality metrics from a user
standpoint. This infrastructure includes active measurements made
by “agents” deployed around the world. Each agent is capable of
simulating users by repeatedly playing streams and testing their
quality. See Section 7.5.2 for additional information on
monitoring for non-streaming web content.

5.3 A Transport System for Content and
Streaming Media Delivery
Within each Akamai delivery network, the transport system is
tasked with moving data from the origin to the edge servers in a
reliable and efficient manner. The techniques used by this system
are tailored to the specific requirements of the data being
transported. We illustrate two techniques below, the first of which
is tailored for less-frequently accessed content and the second of
which can used for live streaming.

5.3.1 Tiered Distribution
With efficient caching strategies, Akamai’s edge server
architecture provides extremely good performance and high cache
hit rates. However, for customers who have very large libraries of
content, some of which may be “cold” or infrequently-accessed,
Akamai’s tiered distribution platform can further improve
performance by reducing the number of content requests back to
the origin server. With tiered distribution, a set of Akamai
“parent” clusters is utilized. These clusters are typically well-
provisioned clusters, chosen for their high degree of connectivity
to edge clusters. When an edge cluster does not have a piece of
requested content in cache, it retrieves that content from its parent
cluster rather than the origin server.

By intelligent implementation of tiered distribution, we can
significantly reduce request load on the origin server. Even for
customers with very large content footprints, we typically see
offload percentages in the high 90’s [44]. This makes it
particularly helpful in the case of large objects that may be subject
to flash crowds. In addition, tiered distribution offers more
effective use of persistent connections with the origin, as the
origin needs only to manage connections with a few dozen parent
clusters rather than hundreds or thousands of edge clusters.
Moreover, the connections between Akamai’s edge clusters and
parent clusters make use of the performance-optimized transport
system we will discuss in Section 6.1. Additional refinements to
this approach, such as having multiple tiers, or using different sets

8

of parents for different content, can provide additional benefits for
some types of content.

5.3.2 An Overlay Network for Live Streaming
Due to their unique requirements, many live streams are handled
somewhat differently than other types of content on the Akamai
network. Once a live stream is captured and encoded, the stream
is sent to a cluster of Akamai servers called the entrypoint. To
avoid having the entrypoint become a single point of failure, it is
customary to send copies of the stream to additional entrypoints,
with a mechanism for automatic failover if one of the entrypoints
go down. Within entrypoint clusters, distributed leader election is
used to tolerate machine failure.
This transport system for live streams then transports the stream’s
packets from the entrypoint to a subset of edge servers that require
the stream. The system works in a publish-subscribe model where
each entrypoint publishes the streams that it has available, and
each edge server subscribes to streams that it requires. Note that
the transport system must simultaneously distribute thousands of
live streams from their respective entrypoints to the subset of edge
servers that require the stream. To perform this task in a scalable
fashion an intermediate layer of servers called reflectors is used.
The reflectors act as intermediaries between the entrypoints and
the edge clusters, where each reflector can receive one or more
streams from the entrypoints and can send those streams to one or
more edge clusters. Note that a reflector is capable of making
multiple copies of each received stream, where each copy can be
sent to a different edge cluster. This feature enables rapidly
replicating a stream to a large number of edge clusters to serve a
highly-popular event. In addition to the scaling benefit, the
reflectors provide multiple alternate paths between each
entrypoint and edge cluster. These alternate paths can be used for
enhancing end-to-end quality via path optimization as described
below.
The goal of the transport system is to simultaneously transmit
each stream across the middle mile of the Internet with minimal
failures, end-to-end packet loss, and cost. To achieve this goal, the
system considers the multiple alternate paths available between
entrypoints and edge server clusters and chooses the best
performing paths for each stream. If no single high-quality path is
available between an entry point and an edge server, the system
uses multiple link-disjoint paths that utilize different reflectors as
the intermediaries. When a stream is sent along multiple paths, the
packet loss on any one path can be recovered from information

sent along the alternate paths. The recovery is performed at the
edge server and results in a “cleaner” version of the stream that is
then forwarded to the user. The transport system also uses
techniques such as prebursting, which provides the user’s media
player with a quick burst of data so that stream play can start
quickly (reducing startup time). For a comprehensive description
of the transport system architecture for live streams, the reader is
referred to [24].
Efficient algorithms are needed for constructing overlay paths,
since the optimal paths change rapidly with Internet conditions.
The problem of constructing overlay paths can be stated as a
complex optimization problem. Research advances on solving this
problem in an efficient, near-optimal fashion using advanced
algorithmic techniques such as LP-rounding can be found in [7].

6. HIGH-PERFORMANCE APPLICATION
DELIVERY NETWORKS
As websites have become increasingly dynamic, the ability to
improve the performance of applications and other non-cacheable
content has become critical. We take two complementary
approaches to this, both based on first connecting end users to
nearby Akamai servers. The first approach is to speed up long-
haul Internet communications by using the Akamai platform as a
high-performance overlay network [5][35]. The second approach
pushes application logic from the origin server out to the edge of
the Internet. These approaches work in concert to improve
application performance, reliability, and scalability. Some
customer use cases are presented in Section 9.2. We now look at
each in more detail.

6.1 A Transport System for Application
Acceleration
The transport system for Akamai’s application delivery network
relies on the use of Akamai’s highly distributed edge servers as a
high-performance overlay network that makes wide-area Internet
communications faster and more reliable. In particular, the
communications between any two Akamai servers can be
optimized to overcome the inefficiencies we discussed in Section
3 through a number of techniques including path optimization and
protocol enhancements.
This transport system is applicable to many types of situations:
accelerating non-cacheable customer content and applications,
retrieving content (or performing freshness checks) from the

Figure 4: With real-time path optimization, Akamai helps customers avoid connectivity problems such as those depicted here,
arising from the Middle East cable cuts.

9

origin server, and various types of communications internal to the
Akamai network as well. In a typical scenario, the end user is first
mapped to a nearby server. That server then uses the high-
performance overlay to cross the Internet, reaching an Akamai
machine near the enterprise’s origin server. Typically, the Akamai
server will be in the same network or even the same data center as
the enterprise origin, so latencies between the two are very low.
The overlay uses several techniques to improve performance by
reducing both the number of round trips and the round trip time
needed for any given communication. These techniques, described
below, all represent areas of ongoing performance research:

 Path optimization. In Section 3, we listed some of the
limitations of BGP and the reasons why the routes it defines
are often less than optimal. In many cases, better
performance can be achieved by sending traffic via an
alternate path—i.e. by directing it through an intermediate
server on the Akamai network. Similar to approaches
described in [17], [37], [36], and [38], Akamai leverages its
distributed network as an Internet overlay. Internet topology
and performance data from Akamai’s mapping system
(described in Section 7.2) are used to dynamically select
potential intermediate nodes for a particular path. Then,
depending on the scenario, the Akamai network may conduct
races to determine which path to use, or it may send
communications over multiple paths for added resiliency.
In [34], analysis of global data collected from the Akamai
network reveals that many paths, particularly in Asia, can
experience a 30-50% performance improvement when using
the overlay.7 Related research [6], [38] has noted similar
results, albeit in non-commercial settings across networks of
much smaller scale. Note that in addition to performance
improvements, the overlay also increases reliability of
communications by offering alternative paths in case
connectivity should become severely degraded for the direct
path. Figure 4 shows how Akamai maintained high
connectivity for customers during the 2008 cable cuts that
caused widespread Internet outages in the Middle East, Asia,
and Africa.

 Packet loss reduction. For latency-sensitive applications
including highly interactive websites employing technologies
such as AJAX or high-bitrate video streaming, TCP can
introduce significant delays when retransmitting lost packets
and initiating connections. The same multi-path technology
used for path optimization can be used for redundancy, and
when combined with forward error correction techniques in
an approach similar to [31], offers significant packet loss
reduction with minimal overhead and without increasing
latency, even for congested paths.

 Transport protocol optimizations. Performance gains can
also be had by overcoming some of the inefficiencies in TCP
and HTTP for long distance Akamai-to-Akamai server
communications. Not being constrained by client software
adoption rates for internal communications, a proprietary

7 These improvement percentages are for small transactions. We

will see later that large file transfers show substantially greater
numbers.

transport-layer protocol is used between its servers to make
use of such techniques as:
- Using pools of persistent connections to eliminate

connection setup and teardown overhead.
- Using optimal TCP window sizing based on knowledge

of real-time network latency conditions. For example,
by increasing the initial window when throughput is
known to be good, an entire communication can often
be sent within the initial window, avoiding the need to
wait for an acknowledgement. Larger windows can also
result in increased throughput over long-distance
communications.

- Enabling intelligent retransmission after packet loss by
leveraging network latency information, rather than
relying on the standard TCP timeout and retransmission
protocols. For example, retransmission timeouts can be
set aggressively shorter when throughput is expected to
be good.

These protocol optimizations work symbiotically with the
transport system’s path optimizations. Much of TCP’s
overhead is due to its focus on reliability under uncertain
network conditions. Since path optimization provides a high-
performance path, the transport-layer protocol can be much
more aggressive and efficient.
Moreover, some of these optimizations can be used not only
for Akamai server-to-server communications but also for
direct communications to end users based on the platform’s
knowledge of last mile throughput and client capabilities. If
the end user has broadband access, the Akamai edge server
can again be aggressive in its choice of initial window sizes
and retransmission timeouts.

 Application optimizations. There are a number of
application-layer techniques that can also be used to help
boost Web application responsiveness for end users. For
example, while delivering an HTML page to a user, the
Akamai edge server can also parse and prefetch any
embedded content (from cache or from the origin server, as
appropriate), to ensure that it is already in memory when the
user’s browser requests it. Thus, even if the embedded
content is uncacheable or long-tail (less likely to be in
cache), the user experiences responsiveness as if the site
were hosted at the local edge server. Akamai edge servers
can also follow embedded links and prefetch the associated
content. Customer business rules dictate the when and how
this should be done.
Content compression, where appropriate, is another example
of an optimization that reduces the number of TCP
roundtrips from origin to edge server, as well as edge server
to end user (where supported by the browser). Generally, any
highly-compressible content, such as HTML, Javascript, or
style sheets, that is more than a few KB in size can benefit
from compression.8 The performance benefits are particularly

8 Content less than 4.2 KB in size is small enough to fit into 3

data packets, which is the default size of the initial TCP
congestion window. Content this size does not benefit as much
from compression as it can already be sent without any
roundtrips (i.e., without waiting for TCP acknowledgements

10

pronounced for end users with slow or high latency
connections.
Additional application logic can also be implemented by
edge servers, such as authentication or serving different
versions of a page based on attributes of the client. More
details of this are covered in Section 7.1.

Note that the path and protocol optimizations here accelerate
communications in both directions and are therefore ideal for
content uploads as well as downloads. Moreover, they are not
limited to Web-based applications; Akamai uses similar
technologies to accelerate other IP-based enterprise applications
such as interactive Web conferencing, virtualized applications
(i.e., running over Citrix ICA or Microsoft RDP protocols), large
file transfers over SFTP or SSH, and email, as well as other
enterprise applications delivered via SSL VPN.
Finally, it is important to realize that the highly distributed nature
of the Akamai network is key to the efficacy of the overlay
network because the end points of the highly optimized long-haul
tunnel are located very close to the origin and the end user. This
means virtually the entire communication from origin to end user
is optimized, and the brief hops on either end are extremely low
latency due to the short distance. In practice, this makes for good
long-distance performance—for large files, for example, origin
server downloads that go over the high performance overlay can
perform nearly as well as files delivered from cache because the
overlay is able to deliver the file from origin to edge server as
quickly as the edge server can deliver to the end user.

6.2 Distributing Applications to the Edge
While the application transport system is able to speed up
communications over the wide-area Internet, the ultimate boost in
performance, reliability, and scalability comes when the
application itself can be distributed to the edge. Akamai
introduced such capabilities on its platform nearly a decade ago
with its EdgeComputing™ services, which include the capability
for companies to deploy and execute request-driven Java J2EE
applications or application components onto Akamai’s edge
servers. Akamai EdgeComputing takes cloud computing to a level
where application resources are allocated not only on-demand but
also near the end user. The latter piece (i.e., proximity near the
end user) is critical to performance yet still missing from most
cloud computing services today.
Implementing a platform capable of EdgeComputing services
requires overcoming a number of interesting technical challenges,
including session management (and replication across machines),
security sandboxing, fault management, distributed load-
balancing, and resource monitoring and management, as well as
providing the appropriate testing and deployment tools. Akamai’s
approach to these issues and general implementation are covered
in some detail in [15], so we refer the interested reader there.
Not all types of applications can run entirely on the edge; those
that rely heavily on large transactional databases will often require
significant communication with origin infrastructure. However,
many types of applications (or portions of applications) can

from the receiver), although pipelined HTTP requests make it
possible to see additional benefit from compression of even the
smallest of content.

benefit significantly from EdgeComputing. We summarize some
categories of use cases from [15]:

 Content aggregation/transformation. These are relatively
basic applications that do not require a transactional
database. They simply collect content from Web services or
other sources and reformat them for display (eg, using
XSLT).

 Static databases. Product catalogs, store locators, site
search, and product configurators are examples of
applications that use fairly static databases and can be run
entirely at the edge.

 Data collection. Many applications requiring forms or other
user input can be handled on the edge, with data batched and
sent to the origin asynchronously. For example, with a
polling application, edge servers could store data locally and
send results back to an origin server (or to Akamai’s storage
system) in a few, larger chunks rather than many individual
requests. Data validation and other types of basic logic can
be executed by the edge server, without origin server
involvement. This approach of aggregating content can
reduce origin server load by several orders of magnitude.

 Complex applications. Even with applications that require
real-time database transactions, running presentation layer
components of the application on the edge can still offer
performance benefits, as origin server communications can
be streamlined to include only raw data rather than full
HTML pages. For example, the origin can generate a small
dynamic page that references larger cacheable fragments,
enabling the final HTML page to be assembled and served at
the edge using Akamai’s ESI (Edge Side Includes)9

technology.
In practice, we find that EdgeComputing customers not only
benefit from the uniquely high levels of performance, scalability,
and fault tolerance this model offers, but also from the ability to
develop and deploy their applications more quickly—with much
less worry about capacity planning, provisioning infrastructure,
and architecting for scalability.

7. PLATFORM COMPONENTS
Now that we have seen some of the different ways in which the
Akamai platform enables the deployment and delivery of highly
scalable web applications, we can take a closer look at the system
components we first introduced in Section 4.2. We have already
examined one of the components, the transport system, at some
depth across the different types of delivery networks. We now
take a closer look at the other system components. The
accompanying Figure 5 provides an architectural overview of the
major components we will be discussing, although this list is by
no means exhaustive.

9 Similar to SSI (Server Side Includes), Akamai ESI provides a

scripting language that can be executed by Akamai servers,
enabling the dynamic assembly of pages at the edge. For more
information, see http://www.akamai.com/html/support/esi.html.

11

7.1 Edge Server Platform
Akamai’s edge servers are responsible for processing end user
requests and serving the requested content, as well as for acting as
intermediaries in our overlay network. The platform offers a rich
set of functionality and content-handling features, developed over
a decade of experience working with and supporting many of the
most sophisticated websites and applications on the Internet.
These controls not only ensure correct application behavior as
experienced by the end user, but also optimize the performance of
applications under different scenarios.

An important feature of the edge server platform is its tremendous
configurability via metadata configuration, which allows
enterprises to retain fine-grained control in applying the
platform’s various capabilities to the handling of their content.

As an example, a single virtual host (with a single DNS hostname)
often contains a wide range of content with different
characteristics. Some paths on the host may be configured as
highly dynamic non-cacheable content that uses a customers’
application-tier as an origin. At the same time, other paths may

correspond to static objects served from Akamai’s storage system.
Authentication and other security policies may be configured for
select paths while other paths may be configured to modify
particular HTTP request and response headers.

Below we list several categories of edge server capabilities to give
an idea of the types of functionality controlled by metadata:

 Origin server location and content path (which may be
different from the URL path given to the end user).

 Cache control, including whether and how long to cache an
object or part of an object. A number of different cache
consistency and invalidation policies are available to suit
different classes of content.

 Cache indexing. Customers have the ability to specify what
to include in the cache index for an object—for example,
whether to include a query string, ignore part of the URL
path, or disregard case, in order to maximize the cacheability
of their content while maintaining correctness.

Figure 5: System components of the Akamai platform.

12

Access control. Numerous authentication and authorization
mechanisms are available to control access to or vary
content. These include distributed mechanisms (such as
validating cookies or client certificates at the edge) as well as
centralized mechanisms that can query an origin
authentication server.

 Response to origin server failure. In the event of origin
server failure, customers may indicate whether or not to
deliver (potentially stale) content from cache, to use a backup
origin server, or to serve static content from the Akamai
storage system. Timeout lengths and back-off parameters are
configurable as well.

 Header alteration. Edge servers can add, delete, or rewrite
HTTP request and response headers, such as those
containing cookies. This can be used to pass information to
origin servers and custom clients, interact with cookies,
manage downstream caches, and work around varying
browser behaviors, for instance.

 EdgeComputing. As noted above, the Akamai platform
offers functionality that allows enterprises to run application
logic on the edge servers. With metadata configuration, some
URLs might be configured to dynamically assemble a page
from fragments using Akamai ESI (Edge Side Includes),
transform a response using XSLT, or pass a request off to a
Java application server on the edge.

 Performance optimization. Numerous features have been
developed to maximize performance under different
conditions and for different classes of applications or
content. These include major features such as tiered
distribution and overlay path optimization, tuning TCP
parameters on a per-connection basis, and asynchronous
prefetching and refreshing of content. Many other
configuration options are provided to tune performance for
different applications and workloads.

The metadata system allows these features to be separately
configured based on matching request and response attributes.
While the simplest matches are on URL path components, file
extensions, and request methods, more advanced metadata
matches can change behavior based on attributes including end-
user geographic location, connection speed, HTTP request and
response headers, cookie values, and many others.

While the platform does support a limited number of in-band
metadata features to be specified through Akamai-specific HTTP
origin response headers, the primary means of metadata
specification is via XML configuration files that are distributed
throughout Akamai’s network using the communications and
control system discussed in Section 7.3. This out-of-band
mechanism offers greater security and ease of integration while
providing a tremendous degree of control. Metadata configuration
can be set across an entire website, a portion of the site, a specific
category of content, or even for individual files.

Metadata configurations are easy to update and can be pushed out
to the network safely and rapidly. An end-to-end staging
environment is provided to enable testing of metadata changes
prior to pushing them to production, and changes to the
production environment are incrementally phased out with
automatic testing and monitoring in between phases.

The architecture is easily extensible, making it simple to evolve
platform functionality to meet customers’ changing needs.
Common metadata best practices are exposed through templates
that make it straightforward to configure the desired behavior
without worrying about all of the details.

Edge server metadata also supports the use of variables to extend
its flexibility. Variable values can be extracted from request and
response attributes, transformed, and then later used. As one
example, variables might be extracted out of a query string to be
used as components of the page’s cache key, or as part of dynamic
page assembly with ESI.

As with all Akamai platform system components, there is
tremendous fault tolerance built into the edge server platform, to
achieve its goal of continuing to successfully handle end user
requests regardless of failures—whether at the machine, data
center, network, or inter-network level. We will delve into this
more deeply in the next section, as the mapping system plays a
key role in the fault tolerance of the edge server platform.

7.2 Mapping System
Akamai’s mapping system is the platform’s global traffic director:
it uses historic and real-time data about the health of both the
Akamai network and the Internet at large in order to create maps
that are used to direct traffic on the Akamai network in a reliable,
efficient, and high performance manner.

There are two main parts to this system: scoring and real-time
mapping. The scoring system first creates a current, topological
map capturing the state of connectivity across the entire Internet.
More precisely, the map divides the Internet into equivalence
classes of IP addresses and represents how (and how well) they
connect to each other. This requires collecting and processing
tremendous amounts of historic and real-time data—including
pings, traceroutes, BGP data, logs, and IP data, collected
cumulatively over the years and refreshed on a continual basis.
Network latency, loss, and connectivity are monitored at a high
frequency, enabling immediate response to Internet faults and
changes in performance.

The real-time mapping part of the system creates the actual maps
used by the Akamai platform to direct end users (identified by the
IP addresses of end users and their name servers) to the best
Akamai edge servers to respond to their requests. This part of the
system also selects intermediates for tiered distribution and the
overlay network. This assignment happens in two main steps:

 Map to cluster. First, a top-level map selects a preferred
edge server cluster for each equivalence class of end users—
assigning each small fragment of the Internet to one of the
thousands of Akamai edge server locations. This mapping
typically is based on a number of factors, including
information from the scoring system (including topological
information such as geographic and network/AS proximity
between clusters and end users), real-time loss and latency,
real-time capacity and demand information, class of traffic
(for example, to ensure that disparate needs of latency-
sensitive and large-footprint traffic are met), and real-time
information about cluster health. These maps are updated
roughly every minute to capture current conditions. If a
connectivity problem between a cluster and a set of end users

13

is observed, for example, those end users will be directed to
clusters that will provide them better performance. A
feedback control system tracks load, capacity, and demand
along multiple dimensions and ensures that the demand sent
to any given cluster will not cause the load in that cluster to
exceed any of its capacity targets.

 Map to server. Once assigned to a specific cluster, a low-
level map within the cluster directs the user to a specific
machine, based on factors including the likelihood of that
machine to have the requested piece of content in cache. It is
desirable to maintain locality within clusters (mapping
requests for the same piece of content to the same machine),
as this improves performance and makes efficient use of
cache space. The challenge is to do so in a dynamic
environment that also factors in load changes and machine
failures. Akamai’s pioneering research in this area began
with consistent hashing in [21] and [22] over a decade ago,
and has evolved significantly from that point.

When hardware and network faults are identified (such as a failing
hard drive on a server), the failed edge servers are “suspended”
and will finish up processing in-progress requests but will not be
sent any additional end users until the fault has been resolved. A
more detailed example is provided in Section 8.

The mapping system itself is a fault-tolerant distributed platform
that is able to survive failures of multiple data centers without
interruption. The scoring and map-to-cluster portions of the
system run in multiple independent sites and leader-elect based on
the current health status of each site. The map-to-server portions
of the system run on multiple machines within each target cluster.
All portions of the system, including monitoring agents and DNS
servers, communicate via a multi-path overlay transport
(described in more detail in Section 7.3) that is able to tolerate
network faults.

Because the efficacy of the mapping system is important to the
overall performance of Akamai’s system, there is continuous
research and development being performed to advance and refine
it. This includes ongoing work to improve the quality of scoring
data inputs, improve locality for large-footprint content, address
shifts in Internet architecture, develop new methods for enhanced
fault-isolation, and optimize the performance of system
components to enable even faster response times.

One example of such a refinement is work that was done to
enhance the servers’ abilities to adjust their own capacity inputs to
the mapping system based on self-monitoring of resource
utilization. This enables heterogeneous hardware, running
different types of applications, to be utilized more efficiently
throughout the network.

The sheer volume (and frequency) of data being processed in the
mapping system also presents a challenge. During an early system
redesign, analysis of the initially proposed design indicated that
the amount of data that would need to be collected and
communicated would have exceeded the amount of end user
traffic being served. Much work has been done since, and
continues to be done, to reduce this data communication burden
while retaining all information essential to high-quality mapping.

7.3 Communications and Control System
The Akamai platform uses several different models for internal
communications, each presenting its own challenges within the
context of a highly distributed Internet platform. For all of these
systems, we face key challenges of scale (communicating with and
controlling a network of over 60,000 machines) and reliability
(particularly in communication, as some Akamai clusters have
great connectivity and performance to their end users, but poor
connectivity to the rest of the Internet).

We expand on a few example systems here:

 Real-time distribution of status and control information.
Here we have small messages that need to be propagated
throughout the network in real time, such as for the mapping
system’s inputs and outputs (load, health, connectivity, and
control information). For these, we use a publish/subscribe
model with multi-path tiered fan-out architecture. Publishers
announce to a set of globally distributed intermediate nodes.
Subscribers can subscribe to one or more of these
intermediates. This multi-path architecture minimizes latency
while enabling scaling and tolerance of network faults.

 Point-to-point RPC and Web Services. In many of the
cases where systems need highly reliable and low latency
point-to-point communications, such as for Web Services,
we are able to utilize the Akamai high-performance overlay
(described in Section 6.1) to improve reliability and
performance, even in the face of network problems.

 Dynamic configuration updates. Many Akamai system
components need to receive frequent configuration updates
with low latency, sometimes as frequently as every few
minutes. One example of this is the customer metadata
configuration files used to configure the edge server
platform, as described in Section 7.1. Key design goals here
include version consistency across the network (including
graceful handling of connectivity issues and machines that
can fail and restart at any time), reliability and scalability of
the system, and a mechanism for ensuring that propagated
changes do not adversely affect the network. Our approach is
to publish the data to a set of highly-available storage servers
that use quorum-based replication to “accept” an update. To
achieve scale and low latency in distribution, updates are
then propagated throughout the network using Akamai’s own
content delivery services. Finally, configuration rollouts are
automatically phased, with health checks performed at each
step, to protect the network. Further details, including the
vector-exchange-based acceptance algorithm and the index
merging recovery mechanism, are covered in [39].

 Key Management Infrastructure. There is a strong desire
to keep sensitive cryptographic keys, such as those used for
SSL, from ever touching the disks of machines. Akamai’s
key management infrastructure performs extensive security
audits of machines prior to distributing keys to software on
those machines. Multiple key distribution servers (which use
PAXOS to coordinate their database replication) allow
machines to obtain audits and keys even in the face of
network problems. Machines which have not yet received
keys will automatically suspend themselves and will not be
included the mapping system’s maps.

14

Software and Machine Configuration Management.
Akamai’s system for distributing software and system
configuration information throughout its network is designed
to handle the heterogeneous and distributed nature of the
platform. A key requirement is that machines must converge
to have the correct software and system configuration, even
in the face of roll-backs and missing update steps that may
have resulted from connectivity problems. As part of each
machine’s software and system configuration update, the
desired state of the machine is constructed and then
compared against the running state. The system then takes
any actions necessary to make the running state match the
desired state, such as updating software components. Due to
the design-for-reliability principle, software updates can be
made with no visible external impact—for example, a
machine requiring an update will be suspended so that new
requests will be directed to other servers, and the machine
will then restart its services after in-progress requests have
completed.

7.4 Data Collection and Analysis System
The Akamai platform also makes use of several different data
collection and analysis mechanisms, all of which share the
common design challenges of scalability and fault tolerance.
These mechanisms include:

 Log collection. Customers’ business requirements often
dictate a need for their raw log files, and Akamai also relies
on log files for billing its customers. Routinely serving well
over 10 million HTTP requests per second translates into
needing to process well over 100 TB of logs per day.
Compressed logs are reliably aggregated to a set of clusters
which have processing pipelines to validate and filter them.
Attributes of selected logs are then passed on to systems that
can include processing for analytics, loading into databases
for historical reporting and billing, and/or delivery to
customers.

 Real-time data collection and monitoring. Akamai’s Query
system is a distributed real-time relational database that
allows for near real-time monitoring of status information
across the distributed network. Status data is provided by
nearly every software component in the Akamai platform in
the form of table rows, and these rows are then aggregated
into thousands of tables within the Query system. Query
supports a standard SQL interface for enabling arbitrary, ad-
hoc queries on the data, rather than having to define
questions of interest ahead of time. We refer the interested
reader to [36] for more information on Query’s architecture
and capabilities.

Akamai makes heavy use of Query for both monitoring and
alerting. For example, network-wide invariants can be
expressed as SQL statements (e.g., “no more than N
machines should be exhibiting some system behavior within
a geographic region at the same time as some other system
behavior is occurring”) with any returned rows resulting in
alerts for further investigation within our operations centers.
Other SQL statements (e.g., “95th percentile of resource
utilization by certain processes, broken down by type of
hardware and software version”) can be used to extract
complex aspects of system state for trending and analysis.

Analytics and Reporting. Akamai’s analytics and reporting
systems enable customers to view information about their
site’s traffic and performance. The system consumes outputs
from the log collection, Query, and other systems, processing
it into a format that enables multi-dimensional reporting. The
most recent generation of the system uses a modified
MapReduce framework to extract various attributes and
submits the data into a fault-tolerant, column-oriented
database system. Customers can then utilize a reporting
interface to construct and issue multidimensional queries
against the database to gain insight into their site traffic, user
demographics, and network performance.

7.5 Additional Systems and Services
The Akamai platform includes a number of other highly scalable,
high availability infrastructures that we will not discuss in detail
here, though each plays an important role in the services offered
to Akamai’s customer base.

7.5.1 DNS
DNS is an important part of most Internet applications, being used
by end users to map from host names to IP addresses. DNS is also
one of the primary mechanisms for interfacing with Akamai’s
mapping system, communicating decisions about which end users
should be assigned to which Akamai clusters and machines. As
such, Akamai has deployed a globally distributed system of
highly-available authoritative DNS servers, both for answering
dynamic answers based on Akamai mapping decisions, as well for
providing static authoritative answers for customer zones.
Akamai has taken numerous measures to ensure strong fault
tolerance for its DNS system, utilizing multiple mechanisms to
allow the system to both scale to high request rates and to provide
excellent performance around the world.

This high availability system is also made available to customers
as an authoritative DNS service. With this service, DNS zone
contents are securely transferred from customers’ master DNS
servers, which would then no longer need to be exposed to end
users. The contents are distributed to Akamai’s global DNS
infrastructure, which then handles the customers’ DNS queries.

7.5.2 Monitoring Agents
For monitoring network and website performance, Akamai has
multiple globally distributed systems of monitoring agents.
Various agents can perform pings, traceroutes, as well as requests
via numerous Internet protocols such as HTTP. Tests are
configured by both the mapping system (e.g., to map out the
Internet and monitor loss and latency in real-time) and by
customers (e.g., to measure website availability and performance,
with results being fed into the analytics systems).

7.5.3 Global Traffic Manager
As customers often wish to have origin servers deployed in
multiple locations for fault-tolerance and load-balancing, Akamai
exposes a version of its mapping technology to its customers as a
service. This Global Traffic Manager (GTM) service consists of
agents at customer origin locations that monitor Internet
performance and collect load information to feed into the mapping
system. Answers are distributed to end users (or Akamai servers
using these custom origins) via DNS, based on factors such as

15

load, network latency, geographic and network proximity, and
customer business rules.

7.5.4 Storage
Akamai’s platform includes a high-availability storage system.
This system can be used as an origin server for many types of
content, such as static objects, large media libraries, and backup
sites. EdgeComputing applications can also use the storage system
as a repository for some types of data. The storage architecture is
designed to have no single point of failure; servers are deployed in
clusters in multiple geographic locations, with both in-cluster and
multi-cluster replication automatically provided. Multiple
mechanisms are provided for uploading to the system, ranging
from rsync-over-ssh to HTTPS POST.

7.5.5 Client Side Delivery
As an additional approach to improving end user performance and
reducing customer cost, Akamai provides a client side delivery
system [3] that can be used by customers. This includes client-
side software (to be installed on end user machines) which
securely communicates with distributed Akamai systems. Client-
side web applications (running within the browser) can
communicate locally with this client software to request content,
such as for the distribution of large software packages. The client
side delivery system behaves much like many peer-to-peer
systems, but provides additional features required by enterprise
customers. In particular, most enterprise customers care strongly
about guaranteed performance and availability of their content,
and they do not want to lose control or visibility over their content
delivery. The client side delivery system achieves these goals: it
leverages the rest of the Akamai platform to seed content, and is
able to fall back to requesting content from the nearest Akamai
servers when peers are not providing adequate performance. By
integrating tightly with the Akamai edge server platform, client
software is able to provide customers with control over and
visibility into the distribution of their content, as well as
guarantees about the integrity of the delivered content. As the
client software communicates with an Akamai control-plane,
decisions about which peers to communicate with can be made
based in the Akamai mapping system’s real-time understanding of
Internet topology.

7.5.6 Management Portal
Akamai’s web-based management portal provides customers with
a high-availability configuration and management platform
allowing them to maintain control over and visibility into their
content, applications, and traffic. Customers can view information
such as traffic reports, network performance and packet loss, end
user demographics, download completion rates, media play
time/buffer time, and custom-defined reports. Other portal
capabilities include self-provisioning, configuration (such as
managing site metadata configurations or invalidating content),
diagnostics, management, alerts, and reporting. The portal system
is accelerated using Akamai’s application delivery network,
improving its performance and reliability for customers around
the world.

8. EXAMPLE: MULTI-LEVEL FAILOVER
As we mentioned in Section 4.3, we take an approach similar to
recovery-oriented computing throughout our platform design—
making the assumption that failures are an inevitable part of
operation and the system must be able to operate regardless.

We now look briefly at a concrete application of this approach by
examining how Akamai content delivery services maintain
availability in a scenario of multiple component failures (more
details are given in [1], based on an older version of the system).
To understand how this works, we must first look at the basic
flow of an HTTP request to the Akamai network.

Initially, a DNS lookup is made to resolve the Akamai hostname.
The DNS resolution takes several steps:

 The first request goes to generic TLD servers, which return
Akamai Top Level Name Servers (TLNS) as authorities,
generally with long DNS TTLs. The Akamai TLNS are
globally distributed, using a mixture of IP Anycast and large
clusters.

 The next query, to an Akamai TLNS, returns delegations
with shorter DNS TTLs to a number of Akamai Low Level
Name Servers (LLNS). The Akamai LLNS are typically
located in close network proximity to the resolving name
server.

 The final query, to an Akamai LLNS, returns edge server IP
addresses based on both the cluster assignment and the low
level map described above. These answers have very short
TTLs so that changes to the mapping assignments (such as in
response to failures or shifts in demand) can be rapidly
distributed to end users.

The end user browser then makes an HTTP request to the edge
server IP address to receive the content. If the content is not
already in cache, the edge server retrieves it from the origin server
and then delivers it to the end user.

Now consider the following types of failure:

 Machine failure: Within an edge cluster, Akamai
implements high availability techniques we have evolved
from principles similar to those in TCPHA [42]. This allows
for virtually seamless response to machine failures, as
another machine will start responding to the IP address of the
failed machine. In addition, the low level map is updated
every few seconds, redirecting new requests as appropriate to
accommodate for the failure.

 Cluster failure: When an entire cluster fails or is
experiencing unreliable connectivity, the cluster assignment
from mapping is rapidly updated to no longer hand out
clusters that have failed or which are experiencing
connectivity issues.

 Connectivity failure: If connectivity between the origin
server and the edge degrades, the platform detects this
quickly and uses its path optimization technology to find
good alternate paths through intermediate nodes on the
Akamai platform.

Note that even if all of the above faults occurred simultaneously,
the platform would still recover quickly.

16

In addition to the robust platform availability that is its direct
goal, there are a couple of useful byproducts to the recovery-
oriented design philosophy. The first is a significant reduction in
the number of operations staff needed to manage the network.
Because the network is designed with the assumption that
components are failing at all times, staff do not need to worry
about most failures nor rush to address them. Moreover, staff can
be aggressive in proactively suspending components if they have
the slightest concern, since doing so will not affect the
performance of the overall system. Even though the operations
staff is itself distributed across multiple sites, the human staff is
not in the critical path for the operation of the network.

A second benefit is the ability to roll out software updates in a
rapid and non-disruptive manner, as described in Section 7.3.
Again, because the failure of a number of machines or clusters
does not affect the overall system, zoned software rollouts can be
performed quickly and frequently without disrupting services to
Akamai’s customers. Some interesting metrics relating to the two
benefits we cite here are presented in [1].

9. CUSTOMER BENEFITS AND RESULTS
Akamai customers can easily make use of multiple Akamai
delivery networks within a single website, tailoring delivery
methods to meet their application requirements. We now present a
sampling of use cases which illustrate different ways in which our
customers have implemented applications on the Akamai platform
and the benefits they have achieved as a result. Many additional
examples and case studies can be found at [2].

9.1 Customer Examples for Content and
Streaming Delivery
Customer-cited benefits for content and streaming delivery
include not only the revenue and brand enhancement benefits
from improved performance and reliability, but also significant
infrastructure cost savings, protection from DDoS attacks, and the
ability to handle large flash crowds.

 New York Post: 20X performance improvement. The
New York Post first came to Akamai after publishing an
exclusive news story that generated huge traffic surge that
overwhelmed its infrastructure. Akamai was able to complete
provision and integrate the site within a few hours, enabling
the New York Post to handle its flash crowd—while making
home page download times 20 times faster as well.

 U.S. Government: Protection against DDoS attack. In July
2009, the U.S. government faced the largest DDoS attack in
its history, with the top-targeted site receiving nearly 8 years’
worth of traffic in one day. Despite the unprecedented scale
of the attack, all of the U.S. government sites delivered via
Akamai—including sites for the White House and 13 of the
15 Federal Cabinet level agencies—remained online, with
Akamai absorbing more than 200 Gbps of attack traffic
targeted at the government sites. At the same time, Akamai
continued serving traffic to legitimate users and maintained a
consistently high level of availability for its customers,
delivering traffic at over 1 Tbps for the rest of its customer
base.

 MySpace: 6X speed up, 98% offload. This popular social
networking company called on Akamai to help it handle its
virtually unprecedented pace of growth. Despite its vast

footprint of personalized and user-generated content,
MySpace is able to offload 98% of its traffic to Akamai
(using tiered distribution). It has seen a 2.6X performance
improvement to end users in the US and a 6X improvement
for international users.

 Sophos: Eliminated costly infrastructure build out.
Global security company Sophos delivers antivirus software
and updates to 100 million users in 150 countries. It first
began using Akamai when its London-based servers were
becoming overwhelmed with each release. Now, Sophos
delivers 20 times the traffic and achieves a 99.9% download
success rate without any additional infrastructure. It
estimates that it has saved hundreds of thousands of dollars
annually and avoided a costly 25-data center deployment.

 MTV Hope for Haiti Concert: 5.8M streams served, $61
million raised. MTV Networks came to Akamai with a plan
to hold a benefit concert for earthquake victims in Haiti
within one week. They wanted to broadcast it online as well
as on television, and their goal was to deliver the best
possible streaming experience while handling any size
audience. Akamai helped make the concert a success,
delivering 100,000 concurrent streams during the event and
more than 5.8 million streams throughout the weekend.

9.2 Customer Examples for Application
Delivery
Akamai’s application delivery services combine Akamai’s
performance optimization, overlay network, EdgeComputing, and
content delivery capabilities to accelerate the entire range of Web
and IP-based applications. We look at a sampling of customer use
cases:

 Enterprise applications. Businesses and SaaS providers
turn to Akamai to help them overcome performance and
reliability challenges for their mission-critical enterprise
applications. Customers typically report global performance
improvements in the range of 100% to 700%.10 An
independent report by Tolly Enterprises [23], for example,
tested response times seen by live users completing tasks
using various applications running on a Citrix XenDesktop
virtual desktop solution. Tolly found Akamai provided
improved performance by 170% to 700% from different
locations in Asia. For enterprises, these improvements can
translate into significant dollars through increases in revenue
and operational efficiency. An IDC research report [20]
determined that organizations using Akamai’s application
acceleration services for the enterprise applications enjoyed
an average annual benefit of $7 million on an average
investment of $174,000.

 Amazon EC2: Boosting cloud computing performance.
While companies are looking to services like EC2 and
Google App Engine to reduce capital and operational costs,
these cloud infrastructures still are lacking in terms of
providing performance and reliability because content still
needs to travel over the middle mile Internet to reach end
users. Applications and the services they utilize (such as

10 Many specific case studies and results can be found at

http://www.akamai.com/html/solutions/web_application_acceler
ator.html.

17

storage) may also be located in different data centers. The
Akamai platform works with cloud-hosted origin
infrastructures the same way as any other, to improve the end
user experience. Some results from EC2-hosted applications
include:
- Project collaboration (SaaS) company: 110%

performance improvement
- Photo and video sharing company: 290% improvement
- Professional sports organization: 300-400%

improvement

 Large file transfers. Enterprises needing to transfer large
files to customers, partners and employees across the globe
see significant performance gains when leveraging Akamai’s
overlay network. Typical results include:
- 5X increase in large file (2 GB) transfer throughput

from Europe to the US for a data backup and recovery
company

- 4X to 5X improvements in the performance for a global
semiconductor company when using SFTP to transfer
large schematic design files

- 2.3X speed ups for file transfers over a VPN between
India and the US for a global publisher. In addition, a
significant portion of the resource-intensive SSL
encryption was offloaded to Akamai.

Note that these performance gains are due solely to path and
protocol optimizations rather than edge caching, as the latter
would not be effective in point-to-point transfers and cases
with very small numbers of users downloading content in any
given region.

 eCommerce: Akamai securely enables billions of dollars in
annual eCommerce revenue for its online retailers, who
include 90 of the top 100 Internet retail sites. Customers [4]
report significant infrastructure cost savings in addition to
performance improvements that help drive site growth,
enhance brand reputation, and decrease shopping cart
abandonment.

 EdgeComputing: Sony Ericsson used Akamai
EdgeComputing to avoid the costly build out of several
regional data centers. They deployed a number of application
components—including a phone configurator, shopping cart,
and dealer locator application—to the edge, while other
components ran in a centralized datacenter. The hybrid cloud
strategy reduced application response time by a factor of four
while increasing application availability from 92% to 100%
and reducing infrastructure needs by 65%.

10. ACKNOWLEDGMENTS
All of the systems discussed here would not have been possible
without over a decade of hard work by Akamai engineers and
researchers. While it would not be feasible to list all of their
names here, they are credited with making the Akamai platform as
scalable and reliable as it is. We would also like to thank the
research community for developing many protocols and
algorithms utilized within our system.

11. REFERENCES
[1] Afergan, M., Wein, J., and LaMeyer, A. Experience with

Some Principles for Building an Internet-Scale Reliable
System. In Proceedings of the 2nd conference on Real,
Large Distributed Systems, pp.1-6, Dec. 2005.

[2] Akamai Customer List:
http://www.akamai.com/html/customers/index.html

[3] Akamai NetSession Interface (Client Side Delivery)
Overview: http://www.akamai.com/client/

[4] Akamai Online Commerce:
http://www.akamai.com/dl/akamai/Akamai_Online_Commer
ce.pdf

[5] Andersen, D. Improving End-to-End Availability Using
Overlay Networks. PhD thesis, MIT, 2005.
http://www.cs.cmu.edu/~dga/papers/andersen-phd-thesis.pdf

[6] Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris,
R. Resilient Overlay Networks. 18th ACM SOSP, Oct. 2001.

[7] Andreev, K., Maggs, B., Meyerson, A. and Sitaraman, R.
Designing Overlay Multicast Networks for Streaming. In
Proceedings of the Fifteenth Annual ACM Symposium on
Parallell Algorithms and Architectures (SPAA), June 2003.

[8] Androutsellis-Theotokis, S. and Spinellis, D. A survey of
peer-to-peer content distribution technologies. ACM
Computing Surveys, 36(4): 335-371, 2004.

[9] Associated Press. At a glance, a look at Internet outages due
to route ‘hijackings’. May 2010.
http://blog.taragana.com/index.php/archive/at-a-glance-a-
look-at-internet-outages-due-to-route-hijackings/

[10] Belson, D. Akamai State of the Internet Report, ACM
SIGOPS Operating Systems Review, 44(3), July 2010

[11] Case study of Akamai customer eBags:
http://www.akamai.com/html/customers/case_study_ebags.ht
ml

[12] Chu, Y., Rao, S., Seshan, S. and Zhang, H. A Case for End
System Multicast. IEEE Journal on Selected Areas in
Communication (JSAC), Special Issue on Networking
Support for Multicast, 20(8), 2002.

[13] CIDR Report: http://www.cidr-report.org/as2.0/
[14] Cisco Systems. Cisco Visual Networking Index: Forecast and

Methodology, 2009-2014. June 2010.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns52
5/ns537/ns705/ns827/white_paper_c11-481360.pdf

[15] Davis, A., Parikh, J., and Weihl, W. EdgeComputing:
Extending Enterprise Applications to the Edge of the
Internet. In Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters,
May 2004.

[16] Deering, S. Multicast Routing in Internetworks and Extended
LANs. In Proceedings of the ACM SIGCOMM, August 1988.

[17] Detour Project:
http://www.cs.washington.edu/research/networking/detour/

[18] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R.,
and Weihl, B. Globally Distributed Content Delivery. IEEE
Internet Computing, 6(5):50-58, 2002.

18

[19] Forrester Consulting. eCommerce Web Site Performance
Today: An Updated Look At Consumer Reaction To A Poor
Online Shopping Experience. Aug. 17, 2009.

[20] IDC. Determining the Return on Investment of Web
Application Acceleration Managed Services. Oct. 2009.

[21] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine,
and M., Lewin, D. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web. In Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, pp. 654–
663, 1997.

[22] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B.,
Dhanidina, R., Iwamoto, K., Kim, B., Matkins, L., and
Yerushalmi, Y. Web Caching with Consistent
Hashing. Computer Networks, 31(11): 1203-1213, 1999.

[23] Katabi, D., Handley, M., and Rohrs, C. Congestion Control
for High Bandwidth-Delay Product Networks. In
Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer
communications, 2002.

[24] Kontothanassis, L., Sitaraman, R., Wein, J., Hong, D.,
Kleinberg, R., Mancuso, B., Shaw, D., and Stodolsky, D. A
Transport Layer for Live Streaming in a Content Delivery
Network. In Proceedings of the IEEE, Special issue on
evolution of Internet technologies, 92(9):1408-1419, Aug.
2004.

[25] Kuhn, R., Kotikalapudi, S., and Montgomery, D. Border
Gateway Protocol Security: Recommendations of the
National Institute of Standards and Technology. Special
Publication 800-54, July 2007.
http://csrc.nist.gov/publications/nistpubs/800-54/SP800-
54.pdf

[26] Lamport, L. The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, May 1998.

[27] Leighton, T. Improving Performance on the Internet.
Communications of the ACM, 52(2):44-51, Feb. 2009.

[28] Leighton, T., Maggs, B., and Sitaraman, R. On the fault
tolerance of some popular bounded-degree networks. In the
33rd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 542-552, 1992.

[29] Net Market Share: http://marketshare.hitslink.com/browser-
market-share.aspx?qprid=2

[30] Network Working Group RFC 3649. High Speed TCP for
Large Congestion Windows, Dec 2003.
http://www.ietf.org/rfc/rfc3649.txt

[31] Nguyen, T. and Zakhor, A. Path Diversity with Forward
Error Correction (PDF) System for Packet Switched
Networks. In Proceedings of IEEE INFOCOM 2003, Apr.
2003.

[32] NSF NeTS FIND Initiative: http://www.nets-find.net/

[33] Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs,
B. Cutting the Electric Bill for Internet-Scale Systems. ACM
SIGCOMM, 2009.

[34] Rahul, H., Kasbekar, M., Sitaraman, R., and Berger, A.
Towards Realizing the Performance and Availability Benefits
of a Global Overlay Network. MIT CSAIL TR 2005-070,
Dec. 2005. http://hdl.handle.net/1721.1/30580

[35] Renesys Blog. Wrestling With the Zombie: Sprint Depeers
Cogent, Internet Partitioned. Oct. 2008.
http://www.renesys.com/blog/2008/10/wrestling-with-the-
zombie-spri.shtml

[36] Repantis, T., Cohen, J., Smith, S., and Wein, J. Scaling a
Monitoring Infrastructure for the Akamai Network. ACM
SIGOPS Operating Systems Review, 44(3), July 2010.

[37] Resilient Overlay Networks: http://nms.csail.mit.edu/ron/
[38] Savage, S., Collins, A., Hoffman, E., Snell, J., and Anderson,

T. The End-to-End Effects of Internet Path Selection. In
Proc. ACM SIGCOMM, pp. 289-299, Sept. 1999.

[39] Sherman, A., Lisiecki, P., Berkheimer, A., and Wein, J.
ACMS: The Akamai configuration Management System. In
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, pp. 245-258,
2005.

[40] Sitaraman, R. Communication and fault tolerance in parallel
computers. PhD thesis, Princeton University, 1993.

[41] Souders, S. High-performance web sites. Communications of
the ACM, 51(12):36-41, Dec. 2008.

[42] TCPHA: http://dragon.linux-
vs.org/~dragonfly/htm/tcpha.htm

[43] TeleGeography. Cable cuts disrupt Internet in Middle East
and India. CommsUpdate, Jan. 2008.
http://www.telegeography.com/cu/article.php?article_id=215
28.

[44] Testimonial of Akamai customer MySpace:
http://www.akamai.com/html/customers/testimonials/myspac
e.html

[45] Tierney, B. TCP Tuning Guide for Distributed Applications
on Wide Area Networks. USENIX & SAGE Login, 26(1):33-
39, Feb. 2001.

[46] Tolly. Akamai IP Application Accelerator Service: Real-
world Performance Benchmarking of the Citrix Virtual
Desktop Enviroment. Sept. 2009.
http://www.tolly.com/DocDetail.aspx?DocNumber=209121

[47] YouTube Blog, May 16, 2010. http://youtube-
global.blogspot.com/2010/05/at-five-years-two-billion-
views-per-day.html

19

