
The Akamai Network: A Platform for High-Performance 
Internet Applications 

Erik Nygren† Ramesh K. Sitaraman†‡ Jennifer Sun†  

†Akamai Technologies, 8 Cambridge Center, Cambridge, MA 02142
{nygren, ramesh}@akamai.com, jennifer_sun@post.harvard.edu 

‡Department of Computer Science, University of Massachusetts, Amherst, MA 01002
ramesh@cs.umass.edu 

ABSTRACT
Comprising more than 61,000 servers located across nearly 1,000 
networks in 70 countries worldwide, the Akamai platform delivers 
hundreds of billions of Internet interactions daily, helping 
thousands of enterprises boost the performance and reliability of 
their Internet applications. In this paper, we give an overview of 
the components and capabilities of this large-scale distributed 
computing platform, and offer some insight into its architecture,
design principles, operation, and management. 

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed networks  
C.2.4 [Distributed Systems]: Distributed applications, Network 
operating systems  

General Terms
Algorithms, Management, Performance, Design, Reliability,
Security, Fault Tolerance.

Keywords
Akamai, CDN, overlay networks, application acceleration, HTTP, 
DNS, content delivery, quality of service, streaming media 

1. INTRODUCTION 
The Internet is radically transforming every aspect of human 
society by enabling a wide range of applications for business, 
commerce, entertainment, news, and social networking. Yet the 
Internet was never architected to support the levels of 
performance, reliability, and scalability that modern-day 
commercial applications demand, creating significant technical 
obstacles for those who wish to transact business on the Web.
Moreover, these obstacles are becoming even more challenging as 
current and future applications are evolving.
Akamai first pioneered the concept of Content Delivery Networks 
(CDNs) [18] more than a decade ago to help businesses overcome 
these technical hurdles. Since then, both the Web and the Akamai 
platform have evolved tremendously. Today, Akamai delivers 15-
20% of all Web traffic worldwide and provides a broad range of 
commercial services beyond content delivery, including Web and
IP application acceleration, EdgeComputing™, delivery of live 
and on-demand high-definition (HD) media, high-availability 
storage, analytics, and authoritative DNS services. 

This paper presents a broad overview of the current Akamai 
platform, including a discussion of many of the key technologies 

and architectural approaches used to achieve its results. We hope 
to offer insight into the richness of the platform and the breadth of 
technological research and innovation needed to make a system of 
this scale work. 
The paper is organized as follows. We first present the problem 
space and look at the motivations for creating such a platform. 
Next, an overview of the Akamai platform is followed by an 
examination of how it overcomes the Internet’s inherent 
limitations for delivering web content, media streams, and 
dynamic applications. We present the case that a highly 
distributed network is the most effective architecture for these 
purposes, particularly as content becomes more interactive and 
more bandwidth hungry. We then take a more detailed look at the 
main components of the Akamai platform, with a focus on its 
design principles and fault tolerant architecture. Finally, we offer 
a cross-section of customer results to validate the real-world 
efficacy of the platform. 

2. INTERNET APPLICATION 
REQUIREMENTS 
Modern enterprise applications and services on the Internet 
require rigorous end-to-end system quality, as even small 
degradations in performance and reliability can have a 
considerable business impact. A single one-hour outage can cost a 
large e-commerce site hundreds of thousands to millions of 
dollars in lost revenue, for example.1 In addition, outages can
cause significant damage to brand reputation. The cost of 
enterprise application downtime is comparable, and may be 
measured in terms of both lost revenue and reduced productivity.  
Application performance is also directly tied to key business 
metrics such as application adoption and site conversion rates. A
2009 Forrester Consulting survey found that a majority of online 
shoppers cited website performance as an important factor in their 
online store loyalty, and that 40% of consumers will wait no more 
than 3 seconds for a page to load before abandoning a site [19].
We can find a more concrete quantification of this effect in an 
Akamai study on an e-commerce website [11]. In the study, site 
visitors were partitioned: half were directed to the site through 
Akamai (providing a high-performance experience) while the 
other half were sent directly to the site’s origin servers. Analysis 
showed that the users on the high-performance site were 15% 
                                                                
1 For instance, a one-hour outage could cost one well-known, 

large online retailer $2.8 million in sales, based on 2009 
revenue numbers. 
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more likely to complete a purchase and 9% less likely to abandon 
the site after viewing just one page. For B2B applications, the 
story is similar. In a 2009 IDC survey, customers using Akamai’s 
enterprise application acceleration services reported annual 
revenue increases of $200,000 to over $3 million directly 
attributable to the improved performance and reliability of their 
applications [20]. 
Unfortunately, inherent limitations in the Internet’s architecture 
make it difficult to achieve desired levels of performance natively 
on the Internet.  Designed as a best-effort network, the Internet 
provides no guarantees on end-to-end reliability or performance. 
On the contrary, wide-area Internet communications are subject to 
a number of bottlenecks that adversely impact performance,
including latency, packet loss, network outages, inefficient 
protocols, and inter-network friction.  
In addition, there are serious questions as to whether the Internet 
can scale to accommodate the demands of online video. Even 
short term projections show required capacity levels that are an 
order of magnitude greater than what we see on the Internet today. 
Distributing HD-quality programming to a global audience 
requires tens of petabits per second of capacity—an increase of 
several orders of magnitude. 
Bridging the technological gap between the limited capabilities of 
the Internet’s infrastructure and the performance requirements of 
current and future distributed applications is thus critical to the 
continued growth and success of the Internet and its viability for 
business. We now take a closer look at why this is so challenging. 

3. INTERNET DELIVERY CHALLENGES 
Although often referred to as a single entity, the Internet is 
actually composed of thousands of different networks, each 
providing access to a small percentage of end users.2 Even the 
largest network has only about 5% of Internet access traffic, and 
percentages drop off sharply from there (see Figure 1). In fact, it 
takes well over 650 networks to reach 90% of all access traffic. 
This means that centrally-hosted content must travel over multiple 
networks to reach its end users. 
Unfortunately, inter-network data communication is neither an 
efficient nor reliable operation and can be adversely affected by a 
number of factors. The most significant include: 

 Peering point congestion. Capacity at peering points where 
networks exchange traffic typically lags demand, due in large 
part to the economic structure of the Internet. Money flows 
in at the first mile (i.e., website hosting) and at the last mile 
(i.e., end users), spurring investment in first and last mile 
infrastructure. However, there is little economic incentive for 
networks to invest in the middle mile—the high-cost, zero-
revenue peering points where networks are forced to 
cooperate with competing entities. These peering points thus 
become bottlenecks that cause packet loss and increase 
latency.  

                                                                
2 According to [13], there were over 34,600 active networks 

(ASes) as of June 2010. 

Figure 1: Percentage of access traffic from top networks 

 Inefficient routing protocols. Although it has managed 
admirably for scaling a best-effort Internet, BGP has a 
number of well-documented limitations. It was never 
designed for performance: BGP bases its route calculations 
primarily on AS hop count, knowing nothing about the 
topologies, latencies, or real-time congestion of the 
underlying networks. In practice, it is used primarily to 
enforce networks’ business agreements with each other rather 
than to provide good end-to-end performance. For example, 
[34] notes that several paths between locations within Asia 
are actually routed through peering points in the US, greatly 
increasing latency. In addition, when routes stop working or 
connectivity degrades, BGP can be slow to converge on new 
routes. Finally, it is well-known that BGP is vulnerable to 
human error as well as foul play; misconfigured or hijacked 
routes can quickly propagate throughout the Internet, causing 
route flapping, bloated paths, and even broad connectivity 
outages [25]. 

 Unreliable networks. Across the Internet, outages are 
happening all the time, caused by a wide variety of reasons—
cable cuts, misconfigured routers, DDoS attacks, power 
outages, even earthquakes and other natural disasters. While 
failures vary in scope, large-scale occurrences are not 
uncommon. In January 2008, for example, parts of Southeast 
Asia and the Middle East experienced an estimated 75% 
reduction in bandwidth connectivity [43] when a series of 
undersea cables were accidentally cut. In December of the 
same year, another cable cut incident lead to outages for 
large numbers of networks in Egypt and India. In both cases 
the disruptions lasted for multiple days. 
Fragile peering relationships can be culprits as well. When 
two networks de-peer over business disputes, they can 
partition the Internet, such that customers from one 
network—as well as any networks single-homed to it—may 
be unable to reach customers of the other network. During 
the high-profile de-peering between Sprint and Cogent in 
October 2008, for instance, connectivity was adversely 
affected for an estimated 3,500 networks [35]. 
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Finally, several high profile examples of Internet outages 
caused by BGP hijacking can be found in [9], such as the 
global YouTube blackout inadvertently caused by Pakistan in 
February 2008, as well as the widespread Internet outage 
caused by a China Telecom leak in April 2010. 

 Inefficient communications protocols: Although it was 
designed for reliability and congestion-avoidance, TCP 
carries significant overhead and can have suboptimal 
performance for links with high latency or packet loss, both 
of which are common across the wide-area Internet. Middle 
mile congestion exacerbates the problem, as packet loss 
triggers TCP retransmissions, further slowing down 
communications. 
Additionally, for interactive applications, the multiple round 
trips required for HTTP requests can quickly add up, 
affecting application performance [41][40]. Most web 
browser also limit the number of parallel connections they 
make for a given host name, further limiting performance 
over long distances for sites that consist of many objects. 
TCP also becomes a serious performance bottleneck for 
video and other large files. Because it requires receiver 
acknowledgements for every window of data packets sent, 
throughput (when using standard TCP) is inversely related to 
network latency or round trip time (RTT). Thus, the distance 
between server and end user can become the overriding 
bottleneck in download speeds and video viewing quality. 
Table 1 illustrates the stark results of this effect. True HD 
quality streams, for example, are not possible if the server is 
not relatively close by.

Table 1: Effect of Distance on Throughput and Download Time 

Distance       
(Server to User)

Network 
RTT

Typical 
Packet 
Loss Throughput

4GB DVD 
Download 
Time

Local:
<100 mi. 1.6 ms 0.6% 

44 Mbps
(high quality 
HDTV) 12 min.

Regional:
500–1,000 mi. 16 ms 0.7% 

4 Mbps
(basic 
HDTV) 2.2 hrs.

Cross-continent:
~3,000 mi. 48 ms 1.0% 

1 Mbps (SD 
TV) 8.2 hrs.

Multi-continent:
~6,000 mi. 96 ms 1.4% 

0.4 Mbps
(poor) 20 hrs

Although many alternate protocols and performance 
enhancements to TCP have been proposed in the literature 
([23], [30], [45]), these tend to be very slow to make their 
way into use by real-world end users, as achieving common 
implementation across the Internet is a formidable task. 

 Scalability. Scaling Internet applications means having 
enough resources available to respond to instantaneous 
demand, whether during planned events or unexpected 
periods of peak traffic. Scaling and mirroring origin 
infrastructure is costly and time-consuming, and it is difficult 
to predict capacity needs in advance.  Unfortunately, 
underprovisioning means potentially losing business while 
overprovisioning means wasting money on unused 
infrastructure. Moreover, website demand is often very spiky, 
meaning that companies traditionally needed to provision for 

anomalous peaks like promotions, events, and attacks, 
investing in significant infrastructure that sits underutilized 
most of the time. This also has an environmental cost when 
underutilized infrastructure consumes significant amounts of 
power [33].
Finally, it is important to note that origin scalability is only a 
part of the scalability challenge. End-to-end application 
scalability means not only ensuring that there is adequate 
origin server capacity, but also adequate network bandwidth
available at all points between end users and the applications 
they are trying to access. As we will discuss further in 
Section 5.1, this is a serious problem as Internet video comes 
of age.  

 Application limitations and slow rate of change adoption.
Although some of the challenges the Internet faces can be 
partially addressed by changes to protocols and/or client 
software, history shows that these are all slow to change.  
While enterprises want to provide the best performance to 
their end users, they often have little or no control over the 
end users’ software. While the benefits of some protocol 
changes can be seen as soon as some clients and servers 
adopt them, other proposed changes can be infeasible to 
implement as they require close to 100% client adoption to 
avoid breaking older clients. Most enterprises would also 
prefer to not to have to keep up with adapting their web
infrastructure to tune performance of all of the heterogeneous 
client software in-use. For example, Microsoft’s Internet 
Explorer 6 (which has considerably slower performance than 
later versions and doesn’t work reliably with protocol 
optimizations such as gzip compression) was still one of the 
most popular browsers in use in December 2009, despite 
being introduced more than eight years prior [29]. 

4. DELIVERY NETWORK OVERVIEW 
The Internet delivery challenges posed above (and in more detail 
in [27]) illustrate how difficult it can be for enterprises to achieve 
acceptable levels of performance, reliability, and cost-effective 
scalability in their Web operations. Most of the bottlenecks are 
outside the control of any given entity and are inherent to the way 
the Internet works—as a loosely-coordinated patchwork of 
heterogeneous autonomous networks.  
Over a decade ago, Akamai introduced the Content Delivery 
Network (CDN) concept to address these challenges. Originally, 
CDNs improved website performance by caching static site 
content at the edge of the Internet, close to end users, in order to 
avoid middle mile bottlenecks as much as possible. Since then the 
technology has rapidly evolved beyond static web content 
delivery. Today, Akamai has application delivery networks that 
can accelerate entire web or IP-based applications, media delivery 
networks that provide HD-quality delivery of live and on-demand 
media, and EdgeComputing networks that deploy and execute 
entire Java J2EE applications in a distributed fashion.  
In addition, service offerings have matured to meet additional 
enterprise needs, such as the ability to maintain visibility and 
control over their content across the distributed network. This 
means providing robust security, logging, SLAs, diagnostics, 
reporting and analytics, and management tools. Here, as with the 
content delivery itself, there are challenges of scale, reliability, 
and performance to be overcome. 
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4.1 Delivery Networks as Virtual Networks 
Conceptually, a delivery network is a virtual network3 built as a 
software layer over the actual Internet, deployed on widely 
distributed hardware, and tailored to meet the specific systems 
requirements of distributed applications and services [Figure 2]. A 
delivery network provides enhanced reliability, performance, 
scalability and security that is not achievable by directly utilizing 
the underlying Internet. A CDN, in the traditional sense of 
delivering static Web content, is one type of delivery network. 
A different but complimentary approach to addressing challenges 
facing Internet applications is a clean-slate redesign of the Internet 
[32]. While a re-architecture of the Internet might be beneficial, 
its adoption in the real world is far from guaranteed. With 
hundreds of billions of dollars in sunk investments and entrenched 
adoption by tens of thousands of entities, the current Internet 
architecture will change slowly, if at all. For example, consider 
that IPv6—a needed incremental change—was first proposed in 
1996 but is just beginning to ramp up in actual deployment nearly 
15 years later. 
The beauty of the virtual network approach is that it works over 
the existing Internet as-is, requiring no client software and no 
changes to the underlying networks. And, since it is built almost 
entirely in software, it can easily be adapted to future 
requirements as the Internet evolves.  

Figure 2: A delivery network is a virtual network built as a 
software layer over the Internet that is deployed on widely 
distributed hardware. 

                                                                
3 The concept of building a virtual network in software to make 

the underlying network more reliable or higher-performing has a 
long history both in parallel ([28], [40]) and distributed 
networks [6]. 

4.2 Anatomy of a Delivery Network 
The Akamai network is a very large distributed system consisting 
of tens of thousands of globally deployed servers that run 
sophisticated algorithms to enable the delivery of highly scalable 
distributed applications. We can think of it as being comprised of 
multiple delivery networks, each tailored to a different type of 
content—for example, static web content, streaming media, or
dynamic applications. At a high level, these delivery networks 
share a similar architecture, which is shown in Figure 3, but the 
underlying technology and implementation of each system 
component may differ in order to best suit the specific type of 
content, streaming media, or application being delivered.
The main components of Akamai’s delivery networks are as 
follows: 

 When the user types a URL into his/her browser, the domain 
name of the URL is translated by the mapping system into 
the IP address of an edge server to serve the content (arrow 
1). To assign the user to a server, the mapping system bases 
its answers on large amounts of historical and current data 
that have been collected and processed regarding global 
network and server conditions. This data is used to choose an 
edge server that is located close to the end user.  

 Each edge server is part of the edge server platform, a large 
global deployment of servers located in thousands of sites 
around the world. These servers are responsible for 
processing requests from nearby users and serving the 
requested content (arrow 2). 

 In order to respond to a request from a user, the edge server 
may need to request content from an origin server.4 For 
instance, dynamic content on a web page that is customized 
for each user cannot be entirely cached by the edge platform 
and must be fetched from the origin. The transport system is 
used to download the required data in a reliable and efficient 
manner. More generally, the transport system is responsible 
for moving data and content over the long-haul Internet with 
high reliability and performance. In many cases, the transport 
system may also cache static content. 

 The communications and control system is used for 
disseminating status information, control messages, and 
configuration updates in a fault-tolerant and timely fashion.

 The data collection and analysis system is responsible for 
collecting and processing data from various sources such as 
server logs, client logs, and network and server information. 
The collected data can be used for monitoring, alerting, 
analytics, reporting, and billing. 

 Finally, the management portal serves two functions. First, it 
provides a configuration management platform that allows an 
enterprise customer to retain fine-grained control how their 
content and applications are served to the end user. These 

                                                                
4 The origin includes the backend web servers, application 

servers, and databases that host the web application, and is often 
owned and controlled by the content or application provider 
rather than the operator of the delivery network. In the case of 
streaming media, the origin includes facilities for video capture 
and encoding of live events, as well as storage facilities for on-
demand media.  
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configurations are updated across the edge platform from the 
management portal via the communications and control 
system. In addition, the management portal provides the 
enterprise with visibility on how their users are interacting 
with their applications and content, including reports on 
audience demographics and traffic metrics. 

While all of Akamai’s delivery networks incorporate the systems 
outlined above, the specific design of each system is influenced by 
application requirements. For instance, the transport system of an 
application delivery network will have a different set of 
requirements and a different architecture than that of a content 
delivery network. We will look at each of these system 
components in more detail in the upcoming sections. 

Figure 3: System components of a delivery network. To 
understand how these components interact, it is instructive to 
walk through a simple example of a user attempting to 
download a web page through the Akamai network. 

4.3 System Design Principles 
The complexity of a globally distributed delivery network brings 
about a unique set of challenges in architecture, operation and 
management—particularly in an environment as heterogeneous 
and unpredictable as the Internet. For example, network 
management and data collection needs to be scalable and fast 
across thousands of server clusters, many of which are located in 
unmanned, third-party data centers, and any number of which 
might be offline or experiencing bad connectivity at any given 
time. Configuration changes and software updates need to be 
rolled out across the network in a safe, quick, and consistent 
manner, without disrupting service. Enterprises also must be able 
to maintain visibility and fine-grained control over their content 
across the distributed platform.  

To guide our design choices, we begin with the assumption that a 
significant number of failures (whether they be at the machine, 
rack, cluster, connectivity, network levels) is expected to be 
occurring at all times in the network. Indeed, while not standard 
in system design, this assumption seems natural in the context of 
the Internet. We have seen many reasons that Internet failures can 
occur in Section 3, and have observed it to be true empirically 
within our own network. 
What this means is that we have designed our delivery networks 
with the philosophy that failures are normal and the delivery 
network must operate seamlessly despite them. Much effort is 
invested in designing recovery from all types of faults, including 
multiple concurrent faults.
This philosophy guides every level of design decision—down to 
the choice of which types of servers to buy: the use of robust 
commodity servers makes more sense in this context than more 
expensive servers with significant hardware redundancy. While it
is still important to be able to immediately identify failing 
hardware (e.g., via ECC memory and disk integrity checks that 
enable servers to automatically take themselves out of service),
there are diminishing returns from building redundancy into 
hardware (e.g, dual power supplies) rather than software. Deeper 
implications of this philosophy are discussed at length in [1]. 
We now mention a few key principles that pervade our platform 
system design: 

 Design for reliability. Because of the nature of our business, 
the goal is to attain extremely close to 100% end-to-end 
availability. This requires significant effort given our 
fundamental assumption that components will fail frequently 
and in unpredictable ways. We must ensure full redundancy 
of components (no single points of failure), build in multiple 
levels of fault tolerance, and use protocols such as PAXOS 
[26] and decentralized leader election to accommodate for 
the possibility of failed system components. 

 Design for scalability. With more than 60,000 machines 
(and growing) across the globe, all platform components 
must be highly scalable. At a basic level, scaling means 
handling more traffic, content, and customers. This also 
translates into handling increasingly large volumes of 
resulting data that must be collected and analyzed, as well as 
building communications, control, and mapping systems that 
must support an ever-increasing number of distributed 
machines. 

 Limit the necessity for human management. To a very 
large extent, we design the system to be autonomic. This is a 
corollary to the philosophy that failures are commonplace 
and that the system must be designed to operate in spite of 
them. Moreover, it is necessary in order to scale, else the 
human operational expense becomes too high. As such, the 
system must be able to respond to faults, handle shifts in load 
and capacity, self-tune for performance, and safely deploy 
software and configuration updates with minimal human 
intervention. (To manage its 60,000-plus machines, the 
Akamai network operation centers currently employ around 
60 people, distributed to work 24x7x365.) 

 Design for performance. There is continual work being 
done to improve the performance of the system’s critical 
paths, not only from the perspective of improving end user 
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response times but for many different metrics across the 
platform, such as cache hit rates and network resource 
utilization. An added benefit to some of this work is energy 
efficiency; for example, kernel and other software 
optimizations enable greater capacity and more traffic served 
with fewer machines. 

We will explore these principles further as we examine each of the 
the Akamai delivery networks in greater detail in the next 
sections. In Section 5 and Section 6 we outline specific challenges 
and solutions in the design of content, streaming media, and 
application delivery networks, and look at the characteristics of 
the transport systems, which differ for each of the delivery 
networks.5 In Section 7, we provide details on the generic system 
components that are shared among the Akamai delivery networks, 
such as the edge server platform, the mapping system, the 
communications and control system, and the data collection and 
analysis system. 

5. HIGH-PERFORMANCE STREAMING 
AND CONTENT DELIVERY NETWORKS 
In this section, we focus on the architectural considerations of 
delivery networks for web content and streaming media. A 
fundamental principle for enhancing performance, reliability, and 
scalability for content and stream delivery is minimizing long-
haul communication through the middle-mile bottleneck of the 
Internet—a goal made feasible only by a pervasive, distributed 
architecture where servers sit as “close” to end users as possible.
Here, closeness may be defined in both geographic and network-
topological measures; the ideal situation (from a user performance 
perspective) would consist of servers located within each user’s 
own ISP and geography, thus minimizing the reliance on inter-
network and long-distance communications.6  
A key question is just how distributed such an architecture needs 
to be. Akamai’s approach generally has been to reach out to the 
true edge of the Internet, deploying not only in large Tier 1 and 
Tier 2 data centers, but also in large numbers of end user ISPs.  
Rather than taking the approach of deploying massive server 
farms in a few dozen data centers, Akamai has deployed server 
clusters of varying size in thousands of locations—an approach 
that arguably adds complexity to system design and management. 
However, we made this architectural choice as we feel that it is 
the one that has the most efficacy.  
Internet access traffic is highly fragmented across networks—the 
top 45 networks combined account for only half of user access 
traffic, and the numbers drop off dramatically from there. This 
means that unless a CDN is deployed in thousands of networks, a
large percentage of traffic being served would still need to travel 
over multiple networks to reach end users. Being deployed in 
local ISPs is particularly critical for regions of the world with 
poor connectivity. More importantly, as we saw in Section 3, 
                                                                
5 The transport systems do share services and components, but are 

tailored to meet the requirements of the different types of 
applications they support.  

6 When long-haul communication is unavoidable, as in the case of 
cold content or live streaming, the transport system is 
architected to ensure that these communications happen with 
high reliability and performance. 

Table 1, because of the way TCP works, the distance between 
server and end user becomes a bottleneck for video throughput. If 
a CDN has only a few dozen server locations, the majority of 
users around the world would be unable to enjoy the high quality 
video streams their last mile broadband access would otherwise 
allow.  Finally, being highly distributed also increases platform 
availability, as an outage across an entire data center (or even 
multiple data centers) does not need to affect delivery network 
performance.
For these reasons, Akamai’s approach is to deploy servers as close 
to end users as possible, minimizing the effects of peering point 
congestion, latency, and network outages when delivering 
content. As a result, customers enjoy levels of reliability and 
performance that are not possible with more centralized 
approaches. 
Finally, while peer-to-peer technologies [8] provide a highly-
distributed option for serving static web content, the lack of 
management and control features in current implementations 
make them unsuitable as stand-alone solutions for enterprise-
quality delivery. Akamai’s enterprise customers treat the Akamai 
network as an extension of their own, in the sense that they expect 
to maintain control and visibility over their content across the 
network. This includes management of content freshness and 
correctness, fine-grained control over how different content is 
handled, the ability to view real-time analytics and traffic reports,
and guarantees of security (including integrity, availability, and 
confidentiality). These capabilities are as critical to enterprise 
business requirements as the performance benefits themselves. 
The lack thereof limits the applicability of peer-to-peer content 
delivery solutions for most enterprise customers, although Akamai
does provide a hybrid option for client-side delivery, discussed 
more in Section 7.5.5. 

5.1 Video-grade Scalability 
In addition to speed and reliability, highly distributed network 
architectures provide another critical advantage—that of end-to-
end scalability. One goal of most CDNs, including Akamai, is to 
provide scalability for their customers by allowing them to 
leverage a larger network on-demand. This reduces the pressure 
on content providers to accurately predict capacity needs and 
enables them to gracefully absorb spikes in website demand. It 
also creates sizeable savings in capital and operational expenses, 
as sites no longer have to build out a large origin infrastructure 
that may sit underutilized except during popular events. 
With high-throughput video, however, scalability requirements 
have reached new orders of magnitude. From near non-existence 
less than a decade ago, video now constitutes more than a third of 
all Internet traffic, and Cisco [14] predicts that by 2014, the 
percentage will increase to over 90%. Just five years old, 
YouTube recently announced [47] that it now receives 2 billion 
views per day. In addition to an increase in the number of viewers, 
the bitrates of streams have also been increasing significantly to 
support higher qualities.  While video streams in the past (often 
displayed in small windows and watched for short periods of 
time) were often a few hundred Kbps, today SDTV- and HDTV-
quality streams ranging between 2 to 40 Mbps are becoming 
prevalent as viewers watch up to full-length movies in full-screen 
or from set-top devices.  
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What does this combination of increased viewership, increased 
bitrates, and increased viewing-duration mean in terms of capacity 
requirements? President Obama’s inauguration set records in 
2009, with Akamai serving over 7 million simultaneous streams 
and seeing overall traffic levels surpassing 2 Tbps. Demand 
continues to rise quickly, spurred by continual increase in 
broadband speed and penetration rates [10]. In April 2010,
Akamai hit a new record peak of 3.45 Tbps on its network. At this 
throughput, the entire printed contents of the U.S. Library of 
Congress could be downloaded in under a minute. In comparison, 
Steve Jobs’ 2001 Macworld Expo keynote, a record-setting 
streaming event at the time, peaked at approximately 35,500 
simultaneous users and 5.3 Gbps of bandwidth—several orders of 
magnitude less. 
In the near term (two to five years), it is reasonable to expect that 
throughput requirements for some single video events will reach 
roughly 50 to 100 Tbps (the equivalent of distributing a TV-
quality stream to a large prime time audience).  This is an order of 
magnitude larger than the biggest online events today. The 
functionality of video events has also been increasing to include 
such features as DVR-like-functionality (where some clients may 
pause or rewind), interactivity, advertisement insertion, and 
mobile device support. 
At this scale, it is no longer sufficient to simply have enough 
server and egress bandwidth resources. One must consider the 
throughput of the entire path from encoders to servers to end 
users. The bottleneck is no longer likely to be at just the origin 
data center. It could be at a peering point, or a network’s backhaul 
capacity, or an ISP’s upstream connectivity—or it could be due to 
the network latency between server and end user, as discussed 
earlier in Section 3. At video scale, a data center’s nominal egress 
capacity has very little to do with its real throughput to end users.  
Because of the limited capacity at the Internet’s various 
bottlenecks, even an extremely well-provisioned and well-
connected data center can only expect to have no more than a few 
hundred Gbps of real throughput to end users. This means that a 
CDN or other network with even 50 well-provisioned, highly 
connected data centers still falls well short of achieving the 100 
Tbps needed to support video’s near-term growth.  
On the other hand, an edge-based platform, with servers in 
thousands of locations, can achieve the scale needed with each 
location supporting just tens of Gbps of output. This reinforces 
the efficacy of a highly distributed architecture for achieving 
enterprise-grade performance, reliability, and scalability,
particularly in the upcoming era where video will dominate 
bandwidth usage. 
It is also worth noting that IP-layer multicast [16] (proposed early 
on as a solution for handling large streaming events) tends to not 
be practical in reality, both due to challenges in supporting within 
backbone routers without introducing security vulnerabilities, and 
due to an increasing set of required features such as content access 
control and time-shifting. This has resulted in the implementation 
of application-layer multicast services, as we describe in Section 
5.3.2. For the drawbacks of IP-layer multicast, the reader is 
further referred to [12]. 

5.2 Streaming Performance 
A web application is said to perform well if pages download 
quickly without errors. However, streaming performance is more 

multi-dimensional and complex. Akamai’s research on how users 
experience streaming media has lead to the definition and 
measurement of several key metrics. A first metric is stream
availability that measures how often a user can play streams 
without failures. Next, since users want the stream to start quickly, 
it is important to minimize startup time. Additionally, users want 
to watch the stream without interruptions or freezes. Therefore, a 
third metric measures the frequency and duration of interruptions
during playback. Finally, users want to experience the media at 
the highest bitrate that their last-mile connectivity, desktop, or
device would allow. Thus, a final important metric is the effective 
bandwidth delivered to the user.  A major design goal of 
Akamai’s stream delivery network is to optimize these metrics to 
provide users a high-quality experience.  In addition to the key 
metrics above, a number of auxiliary metrics such as packet loss, 
jitter, frame loss, RTT, and end-to-end delay are optimized. 
Akamai has built and deployed a global monitoring infrastructure 
that is capable of measuring stream quality metrics from a user 
standpoint. This infrastructure includes active measurements made 
by “agents” deployed around the world. Each agent is capable of 
simulating users by repeatedly playing streams and testing their 
quality. See Section 7.5.2 for additional information on 
monitoring for non-streaming web content. 

5.3 A Transport System for Content and 
Streaming Media Delivery 
Within each Akamai delivery network, the transport system is 
tasked with moving data from the origin to the edge servers in a 
reliable and efficient manner. The techniques used by this system 
are tailored to the specific requirements of the data being 
transported. We illustrate two techniques below, the first of which 
is tailored for less-frequently accessed content and the second of 
which can used for live streaming.  

5.3.1 Tiered Distribution 
With efficient caching strategies, Akamai’s edge server 
architecture provides extremely good performance and high cache 
hit rates. However, for customers who have very large libraries of 
content, some of which may be “cold” or infrequently-accessed, 
Akamai’s tiered distribution platform can further improve 
performance by reducing the number of content requests back to 
the origin server. With tiered distribution, a set of Akamai 
“parent” clusters is utilized. These clusters are typically well-
provisioned clusters, chosen for their high degree of connectivity 
to edge clusters. When an edge cluster does not have a piece of 
requested content in cache, it retrieves that content from its parent 
cluster rather than the origin server.  

By intelligent implementation of tiered distribution, we can 
significantly reduce request load on the origin server. Even for 
customers with very large content footprints, we typically see 
offload percentages in the high 90’s [44]. This makes it 
particularly helpful in the case of large objects that may be subject 
to flash crowds. In addition, tiered distribution offers more 
effective use of persistent connections with the origin, as the 
origin needs only to manage connections with a few dozen parent 
clusters rather than hundreds or thousands of edge clusters.
Moreover, the connections between Akamai’s edge clusters and 
parent clusters make use of the performance-optimized transport 
system we will discuss in Section 6.1. Additional refinements to 
this approach, such as having multiple tiers, or using different sets 
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of parents for different content, can provide additional benefits for 
some types of content. 

5.3.2 An Overlay Network for Live Streaming 
Due to their unique requirements, many live streams are handled 
somewhat differently than other types of content on the Akamai 
network. Once a live stream is captured and encoded, the stream 
is sent to a cluster of Akamai servers called the entrypoint. To 
avoid having the entrypoint become a single point of failure, it is 
customary to send copies of the stream to additional entrypoints,
with a mechanism for automatic failover if one of the entrypoints 
go down. Within entrypoint clusters, distributed leader election is
used to tolerate machine failure. 
This transport system for live streams then transports the stream’s 
packets from the entrypoint to a subset of edge servers that require 
the stream. The system works in a publish-subscribe model where 
each entrypoint publishes the streams that it has available, and 
each edge server subscribes to streams that it requires.  Note that 
the transport system must simultaneously distribute thousands of 
live streams from their respective entrypoints to the subset of edge 
servers that require the stream. To perform this task in a scalable 
fashion an intermediate layer of servers called reflectors is used. 
The reflectors act as intermediaries between the entrypoints and 
the edge clusters, where each reflector can receive one or more 
streams from the entrypoints and can send those streams to one or 
more edge clusters. Note that a reflector is capable of making 
multiple copies of each received stream, where each copy can be 
sent to a different edge cluster. This feature enables rapidly 
replicating a stream to a large number of edge clusters to serve a 
highly-popular event.  In addition to the scaling benefit, the 
reflectors provide multiple alternate paths between each 
entrypoint and edge cluster. These alternate paths can be used for 
enhancing end-to-end quality via path optimization as described 
below. 
The goal of the transport system is to simultaneously transmit 
each stream across the middle mile of the Internet with minimal
failures, end-to-end packet loss, and cost. To achieve this goal, the 
system considers the multiple alternate paths available between 
entrypoints and edge server clusters and chooses the best 
performing paths for each stream. If no single high-quality path is 
available between an entry point and an edge server, the system 
uses multiple link-disjoint paths that utilize different reflectors as 
the intermediaries. When a stream is sent along multiple paths, the 
packet loss on any one path can be recovered from information 

sent along the alternate paths. The recovery is performed at the 
edge server and results in a “cleaner” version of the stream that is 
then forwarded to the user. The transport system also uses 
techniques such as prebursting, which provides the user’s media 
player with a quick burst of data so that stream play can start 
quickly (reducing startup time). For a comprehensive description 
of the transport system architecture for live streams, the reader is 
referred to [24].  
Efficient algorithms are needed for constructing overlay paths, 
since the optimal paths change rapidly with Internet conditions. 
The problem of constructing overlay paths can be stated as a
complex optimization problem. Research advances on solving this 
problem in an efficient, near-optimal fashion using advanced 
algorithmic techniques such as LP-rounding can be found in [7]. 

6. HIGH-PERFORMANCE APPLICATION 
DELIVERY NETWORKS 
As websites have become increasingly dynamic, the ability to 
improve the performance of applications and other non-cacheable 
content has become critical. We take two complementary 
approaches to this, both based on first connecting end users to 
nearby Akamai servers. The first approach is to speed up long-
haul Internet communications by using the Akamai platform as a
high-performance overlay network [5][35]. The second approach 
pushes application logic from the origin server out to the edge of 
the Internet. These approaches work in concert to improve 
application performance, reliability, and scalability. Some 
customer use cases are presented in Section 9.2. We now look at 
each in more detail.  

6.1 A Transport System for Application 
Acceleration 
The transport system for Akamai’s application delivery network 
relies on the use of Akamai’s highly distributed edge servers as a 
high-performance overlay network that makes wide-area Internet 
communications faster and more reliable. In particular, the 
communications between any two Akamai servers can be 
optimized to overcome the inefficiencies we discussed in Section 
3 through a number of techniques including path optimization and 
protocol enhancements. 
This transport system is applicable to many types of situations: 
accelerating non-cacheable customer content and applications, 
retrieving content (or performing freshness checks) from the 

Figure 4: With real-time path optimization, Akamai helps customers avoid connectivity problems such as those depicted here, 
arising from the Middle East cable cuts.
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origin server, and various types of communications internal to the 
Akamai network as well. In a typical scenario, the end user is first 
mapped to a nearby server. That server then uses the high-
performance overlay to cross the Internet, reaching an Akamai 
machine near the enterprise’s origin server. Typically, the Akamai 
server will be in the same network or even the same data center as 
the enterprise origin, so latencies between the two are very low. 
The overlay uses several techniques to improve performance by 
reducing both the number of round trips and the round trip time 
needed for any given communication. These techniques, described 
below, all represent areas of ongoing performance research:  

 Path optimization. In Section 3, we listed some of the 
limitations of BGP and the reasons why the routes it defines 
are often less than optimal. In many cases, better 
performance can be achieved by sending traffic via an 
alternate path—i.e. by directing it through an intermediate 
server on the Akamai network. Similar to approaches 
described in [17], [37], [36], and [38], Akamai leverages its 
distributed network as an Internet overlay. Internet topology 
and performance data from Akamai’s mapping system 
(described in Section 7.2) are used to dynamically select 
potential intermediate nodes for a particular path. Then, 
depending on the scenario, the Akamai network may conduct 
races to determine which path to use, or it may send 
communications over multiple paths for added resiliency.  
In [34], analysis of global data collected from the Akamai 
network reveals that many paths, particularly in Asia, can 
experience a 30-50% performance improvement when using 
the overlay.7   Related research [6], [38] has noted similar 
results, albeit in non-commercial settings across networks of 
much smaller scale.  Note that in addition to performance 
improvements, the overlay also increases reliability of 
communications by offering alternative paths in case 
connectivity should become severely degraded for the direct 
path. Figure 4 shows how Akamai maintained high 
connectivity for customers during the 2008 cable cuts that 
caused widespread Internet outages in the Middle East, Asia, 
and Africa. 

 Packet loss reduction. For latency-sensitive applications 
including highly interactive websites employing technologies 
such as AJAX or high-bitrate video streaming, TCP can 
introduce significant delays when retransmitting lost packets 
and initiating connections.  The same multi-path technology 
used for path optimization can be used for redundancy, and 
when combined with forward error correction techniques in 
an approach similar to [31], offers significant packet loss 
reduction with minimal overhead and without increasing 
latency, even for congested paths.  

 Transport protocol optimizations. Performance gains can 
also be had by overcoming some of the inefficiencies in TCP 
and HTTP for long distance Akamai-to-Akamai server 
communications. Not being constrained by client software 
adoption rates for internal communications, a proprietary

                                                                
7 These improvement percentages are for small transactions. We 

will see later that large file transfers show substantially greater 
numbers. 

transport-layer protocol is used between its servers to make 
use of such techniques as: 
- Using pools of persistent connections to eliminate 

connection setup and teardown overhead. 
- Using optimal TCP window sizing based on knowledge 

of real-time network latency conditions. For example, 
by increasing the initial window when throughput is 
known to be good, an entire communication can often 
be sent within the initial window, avoiding the need to 
wait for an acknowledgement. Larger windows can also 
result in increased throughput over long-distance 
communications. 

- Enabling intelligent retransmission after packet loss by 
leveraging network latency information, rather than 
relying on the standard TCP timeout and retransmission 
protocols. For example, retransmission timeouts can be 
set aggressively shorter when throughput is expected to 
be good. 

These protocol optimizations work symbiotically with the 
transport system’s path optimizations. Much of TCP’s 
overhead is due to its focus on reliability under uncertain 
network conditions. Since path optimization provides a high-
performance path, the transport-layer protocol can be much 
more aggressive and efficient.  
Moreover, some of these optimizations can be used not only 
for Akamai server-to-server communications but also for 
direct communications to end users based on the platform’s 
knowledge of last mile throughput and client capabilities. If 
the end user has broadband access, the Akamai edge server 
can again be aggressive in its choice of initial window sizes 
and retransmission timeouts.

 Application optimizations. There are a number of 
application-layer techniques that can also be used to help 
boost Web application responsiveness for end users. For 
example, while delivering an HTML page to a user, the 
Akamai edge server can also parse and prefetch any 
embedded content (from cache or from the origin server, as 
appropriate), to ensure that it is already in memory when the 
user’s browser requests it. Thus, even if the embedded 
content is uncacheable or long-tail (less likely to be in 
cache), the user experiences responsiveness as if the site 
were hosted at the local edge server. Akamai edge servers 
can also follow embedded links and prefetch the associated 
content. Customer business rules dictate the when and how 
this should be done. 
Content compression, where appropriate, is another example 
of an optimization that reduces the number of TCP 
roundtrips from origin to edge server, as well as edge server 
to end user (where supported by the browser). Generally, any 
highly-compressible content, such as HTML, Javascript, or 
style sheets, that is more than a few KB in size can benefit 
from compression.8 The performance benefits are particularly 

                                                                
8 Content less than 4.2 KB in size is small enough to fit into 3 

data packets, which is the default size of the initial TCP 
congestion window. Content this size does not benefit as much 
from compression as it can already be sent without any 
roundtrips (i.e., without waiting for TCP acknowledgements 
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pronounced for end users with slow or high latency 
connections. 
Additional application logic can also be implemented by 
edge servers, such as authentication or serving different 
versions of a page based on attributes of the client.  More 
details of this are covered in Section 7.1.  

Note that the path and protocol optimizations here accelerate 
communications in both directions and are therefore ideal for 
content uploads as well as downloads. Moreover, they are not 
limited to Web-based applications; Akamai uses similar 
technologies to accelerate other IP-based enterprise applications 
such as interactive Web conferencing, virtualized applications 
(i.e., running over Citrix ICA or Microsoft RDP protocols), large 
file transfers over SFTP or SSH, and email, as well as other 
enterprise applications delivered via SSL VPN.  
Finally, it is important to realize that the highly distributed nature 
of the Akamai network is key to the efficacy of the overlay 
network because the end points of the highly optimized long-haul 
tunnel are located very close to the origin and the end user. This 
means virtually the entire communication from origin to end user 
is optimized, and the brief hops on either end are extremely low 
latency due to the short distance. In practice, this makes for good 
long-distance performance—for large files, for example, origin 
server downloads that go over the high performance overlay can
perform nearly as well as files delivered from cache because the 
overlay is able to deliver the file from origin to edge server as 
quickly as the edge server can deliver to the end user. 

6.2 Distributing Applications to the Edge  
While the application transport system is able to speed up 
communications over the wide-area Internet, the ultimate boost in 
performance, reliability, and scalability comes when the 
application itself can be distributed to the edge. Akamai 
introduced such capabilities on its platform nearly a decade ago 
with its EdgeComputing™ services, which include the capability 
for companies to deploy and execute request-driven Java J2EE 
applications or application components onto Akamai’s edge
servers. Akamai EdgeComputing takes cloud computing to a level 
where application resources are allocated not only on-demand but 
also near the end user. The latter piece (i.e., proximity near the 
end user) is critical to performance yet still missing from most 
cloud computing services today. 
Implementing a platform capable of EdgeComputing services 
requires overcoming a number of interesting technical challenges,
including session management (and replication across machines),
security sandboxing, fault management, distributed load-
balancing, and resource monitoring and management, as well as 
providing the appropriate testing and deployment tools. Akamai’s 
approach to these issues and general implementation are covered 
in some detail in [15], so we refer the interested reader there. 
Not all types of applications can run entirely on the edge; those 
that rely heavily on large transactional databases will often require 
significant communication with origin infrastructure. However, 
many types of applications (or portions of applications) can 

                                                                                                          
from the receiver), although pipelined HTTP requests make it 
possible to see additional benefit from compression of even the 
smallest of content. 

benefit significantly from EdgeComputing.  We summarize some 
categories of use cases from [15]: 

 Content aggregation/transformation. These are relatively 
basic applications that do not require a transactional 
database. They simply collect content from Web services or 
other sources and reformat them for display (eg, using 
XSLT). 

 Static databases. Product catalogs, store locators, site 
search, and product configurators are examples of 
applications that use fairly static databases and can be run 
entirely at the edge. 

 Data collection. Many applications requiring forms or other 
user input can be handled on the edge, with data batched and 
sent to the origin asynchronously. For example, with a 
polling application, edge servers could store data locally and 
send results back to an origin server (or to Akamai’s storage 
system) in a few, larger chunks rather than many individual 
requests. Data validation and other types of basic logic can 
be executed by the edge server, without origin server 
involvement. This approach of aggregating content can 
reduce origin server load by several orders of magnitude. 

 Complex applications. Even with applications that require 
real-time database transactions, running presentation layer 
components of the application on the edge can still offer 
performance benefits, as origin server communications can 
be streamlined to include only raw data rather than full 
HTML pages. For example, the origin can generate a small 
dynamic page that references larger cacheable fragments,
enabling the final HTML page to be assembled and served at 
the edge using Akamai’s ESI (Edge Side Includes)9

technology.  
In practice, we find that EdgeComputing customers not only 
benefit from the uniquely high levels of performance, scalability, 
and fault tolerance this model offers, but also from the ability to 
develop and deploy their applications more quickly—with much 
less worry about capacity planning, provisioning infrastructure, 
and architecting for scalability.   

7. PLATFORM COMPONENTS 
Now that we have seen some of the different ways in which the 
Akamai platform enables the deployment and delivery of highly 
scalable web applications, we can take a closer look at the system 
components we first introduced in Section 4.2. We have already 
examined one of the components, the transport system, at some 
depth across the different types of delivery networks. We now
take a closer look at the other system components. The 
accompanying Figure 5 provides an architectural overview of the 
major components we will be discussing, although this list is by 
no means exhaustive. 

                                                                
9 Similar to SSI (Server Side Includes), Akamai ESI provides a 

scripting language that can be executed by Akamai servers, 
enabling the dynamic assembly of pages at the edge. For more 
information, see http://www.akamai.com/html/support/esi.html. 
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7.1 Edge Server Platform 
Akamai’s edge servers are responsible for processing end user 
requests and serving the requested content, as well as for acting as 
intermediaries in our overlay network. The platform offers a rich 
set of functionality and content-handling features, developed over 
a decade of experience working with and supporting many of the
most sophisticated websites and applications on the Internet. 
These controls not only ensure correct application behavior as 
experienced by the end user, but also optimize the performance of 
applications under different scenarios.  

An important feature of the edge server platform is its tremendous 
configurability via metadata configuration, which allows 
enterprises to retain fine-grained control in applying the 
platform’s various capabilities to the handling of their content. 

As an example, a single virtual host (with a single DNS hostname) 
often contains a wide range of content with different 
characteristics. Some paths on the host may be configured as 
highly dynamic non-cacheable content that uses a customers’ 
application-tier as an origin. At the same time, other paths may 

correspond to static objects served from Akamai’s storage system. 
Authentication and other security policies may be configured for 
select paths while other paths may be configured to modify 
particular HTTP request and response headers. 

Below we list several categories of edge server capabilities to give 
an idea of the types of functionality controlled by metadata: 

 Origin server location and content path (which may be 
different from the URL path given to the end user). 

 Cache control, including whether and how long to cache an 
object or part of an object. A number of different cache 
consistency and invalidation policies are available to suit 
different classes of content. 

 Cache indexing. Customers have the ability to specify what 
to include in the cache index for an object—for example, 
whether to include a query string, ignore part of the URL 
path, or disregard case, in order to maximize the cacheability 
of their content while maintaining correctness. 

Figure 5: System components of the Akamai platform.
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Access control. Numerous authentication and authorization 
mechanisms are available to control access to or vary 
content. These include distributed mechanisms (such as 
validating cookies or client certificates at the edge) as well as 
centralized mechanisms that can query an origin 
authentication server.  

 Response to origin server failure. In the event of origin 
server failure, customers may indicate whether or not to 
deliver (potentially stale) content from cache, to use a backup 
origin server, or to serve static content from the Akamai 
storage system.  Timeout lengths and back-off parameters are 
configurable as well. 

 Header alteration. Edge servers can add, delete, or rewrite 
HTTP request and response headers, such as those 
containing cookies. This can be used to pass information to 
origin servers and custom clients, interact with cookies, 
manage downstream caches, and work around varying 
browser behaviors, for instance. 

 EdgeComputing. As noted above, the Akamai platform 
offers functionality that allows enterprises to run application 
logic on the edge servers. With metadata configuration, some 
URLs might be configured to dynamically assemble a page 
from fragments using Akamai ESI (Edge Side Includes), 
transform a response using XSLT, or pass a request off to a 
Java application server on the edge.  

 Performance optimization. Numerous features have been 
developed to maximize performance under different 
conditions and for different classes of applications or 
content. These include major features such as tiered 
distribution and overlay path optimization, tuning TCP 
parameters on a per-connection basis, and asynchronous 
prefetching and refreshing of content.  Many other 
configuration options are provided to tune performance for 
different applications and workloads. 

The metadata system allows these features to be separately 
configured based on matching request and response attributes. 
While the simplest matches are on URL path components, file 
extensions, and request methods, more advanced metadata 
matches can change behavior based on attributes including end-
user geographic location, connection speed, HTTP request and 
response headers, cookie values, and many others. 

While the platform does support a limited number of in-band 
metadata features to be specified through Akamai-specific HTTP 
origin response headers, the primary means of metadata 
specification is via XML configuration files that are distributed 
throughout Akamai’s network using the communications and 
control system discussed in Section 7.3. This out-of-band 
mechanism offers greater security and ease of integration while 
providing a tremendous degree of control. Metadata configuration 
can be set across an entire website, a portion of the site, a specific 
category of content, or even for individual files. 

Metadata configurations are easy to update and can be pushed out 
to the network safely and rapidly. An end-to-end staging 
environment is provided to enable testing of metadata changes 
prior to pushing them to production, and changes to the 
production environment are incrementally phased out with 
automatic testing and monitoring in between phases.  

The architecture is easily extensible, making it simple to evolve 
platform functionality to meet customers’ changing needs. 
Common metadata best practices are exposed through templates 
that make it straightforward to configure the desired behavior 
without worrying about all of the details.  

Edge server metadata also supports the use of variables to extend 
its flexibility. Variable values can be extracted from request and 
response attributes, transformed, and then later used.  As one 
example, variables might be extracted out of a query string to be 
used as components of the page’s cache key, or as part of dynamic 
page assembly with ESI. 

As with all Akamai platform system components, there is 
tremendous fault tolerance built into the edge server platform, to 
achieve its goal of continuing to successfully handle end user 
requests regardless of failures—whether at the machine, data 
center, network, or inter-network level. We will delve into this 
more deeply in the next section, as the mapping system plays a 
key role in the fault tolerance of the edge server platform. 

7.2 Mapping System 
Akamai’s mapping system is the platform’s global traffic director:
it uses historic and real-time data about the health of both the 
Akamai network and the Internet at large in order to create maps 
that are used to direct traffic on the Akamai network in a reliable, 
efficient, and high performance manner. 

There are two main parts to this system: scoring and real-time 
mapping.  The scoring system first creates a current, topological 
map capturing the state of connectivity across the entire Internet.
More precisely, the map divides the Internet into equivalence 
classes of IP addresses and represents how (and how well) they 
connect to each other. This requires collecting and processing 
tremendous amounts of historic and real-time data—including 
pings, traceroutes, BGP data, logs, and IP data, collected 
cumulatively over the years and refreshed on a continual basis. 
Network latency, loss, and connectivity are monitored at a high 
frequency, enabling immediate response to Internet faults and 
changes in performance. 

The real-time mapping part of the system creates the actual maps 
used by the Akamai platform to direct end users (identified by the 
IP addresses of end users and their name servers) to the best 
Akamai edge servers to respond to their requests. This part of the 
system also selects intermediates for tiered distribution and the 
overlay network. This assignment happens in two main steps: 

 Map to cluster. First, a top-level map selects a preferred 
edge server cluster for each equivalence class of end users—
assigning each small fragment of the Internet to one of the 
thousands of Akamai edge server locations. This mapping 
typically is based on a number of factors, including 
information from the scoring system (including topological 
information such as geographic and network/AS proximity 
between clusters and end users), real-time loss and latency, 
real-time capacity and demand information, class of traffic 
(for example, to ensure that disparate needs of latency-
sensitive and large-footprint traffic are met), and real-time 
information about cluster health. These maps are updated 
roughly every minute to capture current conditions. If a 
connectivity problem between a cluster and a set of end users 
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is observed, for example, those end users will be directed to 
clusters that will provide them better performance. A
feedback control system tracks load, capacity, and demand 
along multiple dimensions and ensures that the demand sent 
to any given cluster will not cause the load in that cluster to 
exceed any of its capacity targets.  

 Map to server. Once assigned to a specific cluster, a low-
level map within the cluster directs the user to a specific
machine, based on factors including the likelihood of that 
machine to have the requested piece of content in cache. It is 
desirable to maintain locality within clusters (mapping 
requests for the same piece of content to the same machine), 
as this improves performance and makes efficient use of 
cache space. The challenge is to do so in a dynamic 
environment that also factors in load changes and machine 
failures. Akamai’s pioneering research in this area began 
with consistent hashing in [21] and [22] over a decade ago, 
and has evolved significantly from that point. 

When hardware and network faults are identified (such as a failing 
hard drive on a server), the failed edge servers are “suspended” 
and will finish up processing in-progress requests but will not be 
sent any additional end users until the fault has been resolved. A
more detailed example is provided in Section 8. 

The mapping system itself is a fault-tolerant distributed platform 
that is able to survive failures of multiple data centers without 
interruption. The scoring and map-to-cluster portions of the 
system run in multiple independent sites and leader-elect based on 
the current health status of each site. The map-to-server portions 
of the system run on multiple machines within each target cluster. 
All portions of the system, including monitoring agents and DNS 
servers, communicate via a multi-path overlay transport 
(described in more detail in Section 7.3) that is able to tolerate 
network faults. 

Because the efficacy of the mapping system is important to the 
overall performance of Akamai’s system, there is continuous 
research and development being performed to advance and refine 
it. This includes ongoing work to improve the quality of scoring 
data inputs, improve locality for large-footprint content, address 
shifts in Internet architecture, develop new methods for enhanced
fault-isolation, and optimize the performance of system 
components to enable even faster response times.

One example of such a refinement is work that was done to 
enhance the servers’ abilities to adjust their own capacity inputs to 
the mapping system based on self-monitoring of resource 
utilization. This enables heterogeneous hardware, running 
different types of applications, to be utilized more efficiently 
throughout the network.  

The sheer volume (and frequency) of data being processed in the 
mapping system also presents a challenge. During an early system 
redesign, analysis of the initially proposed design indicated that 
the amount of data that would need to be collected and 
communicated would have exceeded the amount of end user 
traffic being served. Much work has been done since, and 
continues to be done, to reduce this data communication burden 
while retaining all information essential to high-quality mapping.

7.3 Communications and Control System 
The Akamai platform uses several different models for internal 
communications, each presenting its own challenges within the 
context of a highly distributed Internet platform. For all of these 
systems, we face key challenges of scale (communicating with and 
controlling a network of over 60,000 machines) and reliability 
(particularly in communication, as some Akamai clusters have 
great connectivity and performance to their end users, but poor 
connectivity to the rest of the Internet). 

We expand on a few example systems here: 

 Real-time distribution of status and control information. 
Here we have small messages that need to be propagated 
throughout the network in real time, such as for the mapping 
system’s inputs and outputs (load, health, connectivity, and 
control information).  For these, we use a publish/subscribe 
model with multi-path tiered fan-out architecture. Publishers 
announce to a set of globally distributed intermediate nodes. 
Subscribers can subscribe to one or more of these 
intermediates. This multi-path architecture minimizes latency 
while enabling scaling and tolerance of network faults. 

 Point-to-point RPC and Web Services. In many of the 
cases where systems need highly reliable and low latency 
point-to-point communications, such as for Web Services, 
we are able to utilize the Akamai high-performance overlay 
(described in Section 6.1) to improve reliability and 
performance, even in the face of network problems. 

 Dynamic configuration updates. Many Akamai system 
components need to receive frequent configuration updates 
with low latency, sometimes as frequently as every few 
minutes. One example of this is the customer metadata 
configuration files used to configure the edge server 
platform, as described in Section 7.1. Key design goals here 
include version consistency across the network (including 
graceful handling of connectivity issues and machines that 
can fail and restart at any time), reliability and scalability of 
the system, and a mechanism for ensuring that propagated 
changes do not adversely affect the network. Our approach is 
to publish the data to a set of highly-available storage servers 
that use quorum-based replication to “accept” an update. To 
achieve scale and low latency in distribution, updates are 
then propagated throughout the network using Akamai’s own 
content delivery services. Finally, configuration rollouts are 
automatically phased, with health checks performed at each 
step, to protect the network. Further details, including the 
vector-exchange-based acceptance algorithm and the index 
merging recovery mechanism, are covered in [39]. 

 Key Management Infrastructure. There is a strong desire 
to keep sensitive cryptographic keys, such as those used for 
SSL, from ever touching the disks of machines.  Akamai’s 
key management infrastructure performs extensive security 
audits of machines prior to distributing keys to software on 
those machines. Multiple key distribution servers (which use 
PAXOS to coordinate their database replication) allow 
machines to obtain audits and keys even in the face of 
network problems. Machines which have not yet received 
keys will automatically suspend themselves and will not be 
included the mapping system’s maps.
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Software and Machine Configuration Management.
Akamai’s system for distributing software and system 
configuration information throughout its network is designed 
to handle the heterogeneous and distributed nature of the 
platform. A key requirement is that machines must converge 
to have the correct software and system configuration, even 
in the face of roll-backs and missing update steps that may 
have resulted from connectivity problems. As part of each 
machine’s software and system configuration update, the 
desired state of the machine is constructed and then 
compared against the running state. The system then takes 
any actions necessary to make the running state match the 
desired state, such as updating software components. Due to 
the design-for-reliability principle, software updates can be 
made with no visible external impact—for example, a 
machine requiring an update will be suspended so that new 
requests will be directed to other servers, and the machine 
will then restart its services after in-progress requests have 
completed. 

7.4 Data Collection and Analysis System 
The Akamai platform also makes use of several different data 
collection and analysis mechanisms, all of which share the 
common design challenges of scalability and fault tolerance.  
These mechanisms include: 

 Log collection. Customers’ business requirements often 
dictate a need for their raw log files, and Akamai also relies 
on log files for billing its customers. Routinely serving well 
over 10 million HTTP requests per second translates into 
needing to process well over 100 TB of logs per day. 
Compressed logs are reliably aggregated to a set of clusters 
which have processing pipelines to validate and filter them. 
Attributes of selected logs are then passed on to systems that 
can include processing for analytics, loading into databases 
for historical reporting and billing, and/or delivery to 
customers. 

 Real-time data collection and monitoring. Akamai’s Query
system is a distributed real-time relational database that 
allows for near real-time monitoring of status information 
across the distributed network. Status data is provided by 
nearly every software component in the Akamai platform in 
the form of table rows, and these rows are then aggregated 
into thousands of tables within the Query system. Query 
supports a standard SQL interface for enabling arbitrary, ad-
hoc queries on the data, rather than having to define 
questions of interest ahead of time. We refer the interested 
reader to [36] for more information on Query’s architecture 
and capabilities.  

Akamai makes heavy use of Query for both monitoring and 
alerting. For example, network-wide invariants can be 
expressed as SQL statements (e.g., “no more than N 
machines should be exhibiting some system behavior within 
a geographic region at the same time as some other system 
behavior is occurring”) with any returned rows resulting in 
alerts for further investigation within our operations centers. 
Other SQL statements (e.g., “95th percentile of resource 
utilization by certain processes, broken down by type of 
hardware and software version”) can be used to extract 
complex aspects of system state for trending and analysis.

Analytics and Reporting. Akamai’s analytics and reporting 
systems enable customers to view information about their 
site’s traffic and performance. The system consumes outputs 
from the log collection, Query, and other systems, processing 
it into a format that enables multi-dimensional reporting. The 
most recent generation of the system uses a modified 
MapReduce framework to extract various attributes and 
submits the data into a fault-tolerant, column-oriented 
database system. Customers can then utilize a reporting 
interface to construct and issue multidimensional queries 
against the database to gain insight into their site traffic, user 
demographics, and network performance. 

7.5 Additional Systems and Services  
The Akamai platform includes a number of other highly scalable, 
high availability infrastructures that we will not discuss in detail 
here, though each plays an important role in the services offered 
to Akamai’s customer base.

7.5.1 DNS
DNS is an important part of most Internet applications, being used 
by end users to map from host names to IP addresses. DNS is also 
one of the primary mechanisms for interfacing with Akamai’s 
mapping system, communicating decisions about which end users 
should be assigned to which Akamai clusters and machines. As 
such, Akamai has deployed a globally distributed system of 
highly-available authoritative DNS servers, both for answering 
dynamic answers based on Akamai mapping decisions, as well for 
providing static authoritative answers for customer zones.  
Akamai has taken numerous measures to ensure strong fault 
tolerance for its DNS system, utilizing multiple mechanisms to 
allow the system to both scale to high request rates and to provide 
excellent performance around the world. 

This high availability system is also made available to customers 
as an authoritative DNS service. With this service, DNS zone 
contents are securely transferred from customers’ master DNS
servers, which would then no longer need to be exposed to end 
users. The contents are distributed to Akamai’s global DNS 
infrastructure, which then handles the customers’ DNS queries.

7.5.2 Monitoring Agents 
For monitoring network and website performance, Akamai has 
multiple globally distributed systems of monitoring agents.  
Various agents can perform pings, traceroutes, as well as requests 
via numerous Internet protocols such as HTTP. Tests are 
configured by both the mapping system (e.g., to map out the 
Internet and monitor loss and latency in real-time) and by 
customers (e.g., to measure website availability and performance, 
with results being fed into the analytics systems). 

7.5.3 Global Traffic Manager 
As customers often wish to have origin servers deployed in 
multiple locations for fault-tolerance and load-balancing, Akamai 
exposes a version of its mapping technology to its customers as a 
service.  This Global Traffic Manager (GTM) service consists of 
agents at customer origin locations that monitor Internet 
performance and collect load information to feed into the mapping 
system.  Answers are distributed to end users (or Akamai servers 
using these custom origins) via DNS, based on factors such as 
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load, network latency, geographic and network proximity, and 
customer business rules. 

7.5.4 Storage 
Akamai’s platform includes a high-availability storage system.
This system can be used as an origin server for many types of 
content, such as static objects, large media libraries, and backup 
sites. EdgeComputing applications can also use the storage system 
as a repository for some types of data. The storage architecture is 
designed to have no single point of failure; servers are deployed in 
clusters in multiple geographic locations, with both in-cluster and 
multi-cluster replication automatically provided. Multiple 
mechanisms are provided for uploading to the system, ranging 
from rsync-over-ssh to HTTPS POST. 

7.5.5 Client Side Delivery 
As an additional approach to improving end user performance and 
reducing customer cost, Akamai provides a client side delivery 
system [3] that can be used by customers. This includes client-
side software (to be installed on end user machines) which 
securely communicates with distributed Akamai systems. Client-
side web applications (running within the browser) can 
communicate locally with this client software to request content,
such as for the distribution of large software packages. The client 
side delivery system behaves much like many peer-to-peer 
systems, but provides additional features required by enterprise 
customers. In particular, most enterprise customers care strongly 
about guaranteed performance and availability of their content,
and they do not want to lose control or visibility over their content 
delivery. The client side delivery system achieves these goals: it 
leverages the rest of the Akamai platform to seed content, and is 
able to fall back to requesting content from the nearest Akamai 
servers when peers are not providing adequate performance. By 
integrating tightly with the Akamai edge server platform, client 
software is able to provide customers with control over and 
visibility into the distribution of their content, as well as 
guarantees about the integrity of the delivered content. As the 
client software communicates with an Akamai control-plane, 
decisions about which peers to communicate with can be made 
based in the Akamai mapping system’s real-time understanding of 
Internet topology.

7.5.6 Management Portal 
Akamai’s web-based management portal provides customers with 
a high-availability configuration and management platform 
allowing them to maintain control over and visibility into their 
content, applications, and traffic. Customers can view information 
such as traffic reports, network performance and packet loss, end 
user demographics, download completion rates, media play 
time/buffer time, and custom-defined reports. Other portal 
capabilities include self-provisioning, configuration (such as 
managing site metadata configurations or invalidating content),
diagnostics, management, alerts, and reporting. The portal system 
is accelerated using Akamai’s application delivery network,
improving its performance and reliability for customers around 
the world. 

8. EXAMPLE: MULTI-LEVEL FAILOVER  
As we mentioned in Section 4.3, we take an approach similar to 
recovery-oriented computing throughout our platform design—
making the assumption that failures are an inevitable part of 
operation and the system must be able to operate regardless. 

We now look briefly at a concrete application of this approach by 
examining how Akamai content delivery services maintain 
availability in a scenario of multiple component failures (more 
details are given in [1], based on an older version of the system).
To understand how this works, we must first look at the basic 
flow of an HTTP request to the Akamai network.  

Initially, a DNS lookup is made to resolve the Akamai hostname. 
The DNS resolution takes several steps:  

 The first request goes to generic TLD servers, which return 
Akamai Top Level Name Servers (TLNS) as authorities,
generally with long DNS TTLs. The Akamai TLNS are 
globally distributed, using a mixture of IP Anycast and large 
clusters. 

 The next query, to an Akamai TLNS, returns delegations 
with shorter DNS TTLs to a number of Akamai Low Level 
Name Servers (LLNS).  The Akamai LLNS are typically 
located in close network proximity to the resolving name 
server. 

 The final query, to an Akamai LLNS, returns edge server IP 
addresses based on both the cluster assignment and the low 
level map described above. These answers have very short 
TTLs so that changes to the mapping assignments (such as in 
response to failures or shifts in demand) can be rapidly 
distributed to end users.

The end user browser then makes an HTTP request to the edge 
server IP address to receive the content. If the content is not 
already in cache, the edge server retrieves it from the origin server 
and then delivers it to the end user.  

Now consider the following types of failure:

 Machine failure: Within an edge cluster, Akamai 
implements high availability techniques we have evolved 
from principles similar to those in TCPHA [42]. This allows 
for virtually seamless response to machine failures, as 
another machine will start responding to the IP address of the 
failed machine. In addition, the low level map is updated 
every few seconds, redirecting new requests as appropriate to 
accommodate for the failure. 

 Cluster failure: When an entire cluster fails or is 
experiencing unreliable connectivity, the cluster assignment 
from mapping is rapidly updated to no longer hand out 
clusters that have failed or which are experiencing 
connectivity issues.

 Connectivity failure: If connectivity between the origin 
server and the edge degrades, the platform detects this 
quickly and uses its path optimization technology to find 
good alternate paths through intermediate nodes on the 
Akamai platform. 

Note that even if all of the above faults occurred simultaneously, 
the platform would still recover quickly.  
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In addition to the robust platform availability that is its direct 
goal, there are a couple of useful byproducts to the recovery-
oriented design philosophy. The first is a significant reduction in 
the number of operations staff needed to manage the network. 
Because the network is designed with the assumption that 
components are failing at all times, staff do not need to worry 
about most failures nor rush to address them.  Moreover, staff can 
be aggressive in proactively suspending components if they have 
the slightest concern, since doing so will not affect the 
performance of the overall system. Even though the operations 
staff is itself distributed across multiple sites, the human staff is 
not in the critical path for the operation of the network. 

A second benefit is the ability to roll out software updates in a 
rapid and non-disruptive manner, as described in Section 7.3.
Again, because the failure of a number of machines or clusters 
does not affect the overall system, zoned software rollouts can be 
performed quickly and frequently without disrupting services to 
Akamai’s customers.  Some interesting metrics relating to the two 
benefits we cite here are presented in [1]. 

9. CUSTOMER BENEFITS AND RESULTS 
Akamai customers can easily make use of multiple Akamai 
delivery networks within a single website, tailoring delivery 
methods to meet their application requirements. We now present a
sampling of use cases which illustrate different ways in which our 
customers have implemented applications on the Akamai platform 
and the benefits they have achieved as a result. Many additional 
examples and case studies can be found at [2]. 

9.1 Customer Examples for Content and 
Streaming Delivery 
Customer-cited benefits for content and streaming delivery 
include not only the revenue and brand enhancement benefits 
from improved performance and reliability, but also significant 
infrastructure cost savings, protection from DDoS attacks, and the 
ability to handle large flash crowds. 

 New York Post: 20X performance improvement.  The 
New York Post first came to Akamai after publishing an 
exclusive news story that generated huge traffic surge that 
overwhelmed its infrastructure. Akamai was able to complete 
provision and integrate the site within a few hours, enabling 
the New York Post to handle its flash crowd—while making 
home page download times 20 times faster as well. 

 U.S. Government: Protection against DDoS attack. In July 
2009, the U.S. government faced the largest DDoS attack in 
its history, with the top-targeted site receiving nearly 8 years’ 
worth of traffic in one day. Despite the unprecedented scale 
of the attack, all of the U.S. government sites delivered via 
Akamai—including sites for the White House and 13 of the 
15 Federal Cabinet level agencies—remained online, with 
Akamai absorbing more than 200 Gbps of attack traffic 
targeted at the government sites. At the same time, Akamai 
continued serving traffic to legitimate users and maintained a 
consistently high level of availability for its customers, 
delivering traffic at over 1 Tbps for the rest of its customer 
base. 

 MySpace: 6X speed up, 98% offload.  This popular social 
networking company called on Akamai to help it handle its 
virtually unprecedented pace of growth. Despite its vast 

footprint of personalized and user-generated content, 
MySpace is able to offload 98% of its traffic to Akamai 
(using tiered distribution). It has seen a 2.6X performance 
improvement to end users in the US and a 6X improvement 
for international users. 

 Sophos: Eliminated costly infrastructure build out.  
Global security company Sophos delivers antivirus software 
and updates to 100 million users in 150 countries. It first 
began using Akamai when its London-based servers were 
becoming overwhelmed with each release. Now, Sophos 
delivers 20 times the traffic and achieves a 99.9% download 
success rate without any additional infrastructure. It 
estimates that it has saved hundreds of thousands of dollars 
annually and avoided a costly 25-data center deployment. 

 MTV Hope for Haiti Concert: 5.8M streams served, $61 
million raised. MTV Networks came to Akamai with a plan 
to hold a benefit concert for earthquake victims in Haiti 
within one week. They wanted to broadcast it online as well 
as on television, and their goal was to deliver the best 
possible streaming experience while handling any size 
audience. Akamai helped make the concert a success, 
delivering 100,000 concurrent streams during the event and 
more than 5.8 million streams throughout the weekend. 

9.2 Customer Examples for Application 
Delivery 
Akamai’s application delivery services combine Akamai’s 
performance optimization, overlay network, EdgeComputing, and 
content delivery capabilities to accelerate the entire range of Web 
and IP-based applications. We look at a sampling of customer use 
cases: 

 Enterprise applications.  Businesses and SaaS providers 
turn to Akamai to help them overcome performance and 
reliability challenges for their mission-critical enterprise 
applications. Customers typically report global performance 
improvements in the range of 100% to 700%.10 An 
independent report by Tolly Enterprises [23], for example, 
tested response times seen by live users completing tasks 
using various applications running on a Citrix XenDesktop 
virtual desktop solution. Tolly found Akamai provided 
improved performance by 170% to 700% from different 
locations in Asia. For enterprises, these improvements can 
translate into significant dollars through increases in revenue 
and operational efficiency. An IDC research report [20]
determined that organizations using Akamai’s application 
acceleration services for the enterprise applications enjoyed 
an average annual benefit of $7 million on an average 
investment of $174,000. 

 Amazon EC2: Boosting cloud computing performance. 
While companies are looking to services like EC2 and 
Google App Engine to reduce capital and operational costs, 
these cloud infrastructures still are lacking in terms of 
providing performance and reliability because content still 
needs to travel over the middle mile Internet to reach end 
users. Applications and the services they utilize (such as 

                                                                
10 Many specific case studies and results can be found at 

http://www.akamai.com/html/solutions/web_application_acceler
ator.html. 
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storage) may also be located in different data centers. The 
Akamai platform works with cloud-hosted origin 
infrastructures the same way as any other, to improve the end 
user experience. Some results from EC2-hosted applications 
include: 
- Project collaboration (SaaS) company:  110% 

performance improvement 
- Photo and video sharing company: 290% improvement 
- Professional sports organization: 300-400% 

improvement 

 Large file transfers.  Enterprises needing to transfer large 
files to customers, partners and employees across the globe 
see significant performance gains when leveraging Akamai’s 
overlay network. Typical results include: 
- 5X increase in large file (2 GB) transfer throughput 

from Europe to the US for a data backup and recovery 
company  

- 4X to 5X improvements in the performance for a global 
semiconductor company when using SFTP to transfer 
large schematic design files 

- 2.3X speed ups for file transfers over a VPN between 
India and the US for a global publisher. In addition, a 
significant portion of the resource-intensive SSL 
encryption was offloaded to Akamai. 

Note that these performance gains are due solely to path and 
protocol optimizations rather than edge caching, as the latter 
would not be effective in point-to-point transfers and cases 
with very small numbers of users downloading content in any 
given region. 

 eCommerce: Akamai securely enables billions of dollars in 
annual eCommerce revenue for its online retailers, who 
include 90 of the top 100 Internet retail sites. Customers [4]
report significant infrastructure cost savings in addition to 
performance improvements that help drive site growth, 
enhance brand reputation, and decrease shopping cart 
abandonment.  

 EdgeComputing: Sony Ericsson used Akamai 
EdgeComputing to avoid the costly build out of several 
regional data centers. They deployed a number of application 
components—including a phone configurator, shopping cart, 
and dealer locator application—to the edge, while other 
components ran in a centralized datacenter. The hybrid cloud 
strategy reduced application response time by a factor of four 
while increasing application availability from 92% to 100% 
and reducing infrastructure needs by 65%.
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