Csep-590A-Lec-2

Pytorch tutorial

  • Slides link
  • Notebook link
  • Seems straightforward. Take a bunch of tribal knowledge as to what things work, but in the end you just compose a list of operations, each one changing dimensions and adjusting weights until prediction answers come out better on training data.

Bayes Filter

  • Slides link
  • Framework:
    • Given:
      • Stream of observations and actions: dt={u1,z2,,ut1,zt}d_t = \{ u_1, z_2, \ldots, u_{t-1}, z_t \}
      • Sensor model: P(zx)P(z | x)
      • Action model: P(xu,x)P(x|u, x')
      • Prior: P(x)P(x)
    • Output:
      • Estimate of state XX
      • Belief / posterior: Bel(xt)=P(xtu1,z2,,ut1,zt)Bel(x_t) = P(x_t | u_1, z_2, \ldots, u_{t-1}, z_t)

Note below notation changes into ui,ziu_i, z_i occurring at the same step.

Bel(xt)=P(xtu1,z1,,ut,zt)by definition=ηP(ztxt,u1,z1,,ut)P(xtu1,z1,,ut)by Bayes rule=ηP(ztxt)P(xtu1,z1,,ut)by Markov assumption=ηP(ztxt)P(xtu1,z1,,ut,xt1)P(xt1u1,z1,,ut),dxt1law of total probability=ηP(ztxt)P(xtut,xt1)P(xt1u1,z1,,ut),dxt1by Markov assumption=ηP(ztxt)P(xtut,xt1)Bel(xt1),dxt1by definition\begin{align} Bel(x_t) &= P(x_t | u_1, z_1, \ldots, u_t, z_t) &\text{by definition} \\ &= \eta P(z_t | x_t, u_1, z_1, \ldots, u_t) P (x_t| u_1, z_1, \ldots, u_t) &\text{by Bayes rule} \\ &= \eta P(z_t | x_t) P (x_t| u_1, z_1, \ldots, u_t) &\text{by Markov assumption}\\ &= \eta P(z_t | x_t) \int P (x_t| u_1, z_1, \ldots, u_t, x_{t-1})P (x_{t-1}| u_1, z_1, \ldots, u_t) ,dx_{t-1} &\text{law of total probability}\\ &= \eta P(z_t | x_t) \int P (x_t| u_t, x_{t-1})P (x_{t-1}| u_1, z_1, \ldots, u_t) ,dx_{t-1} &\text{by Markov assumption}\\ &= \eta P(z_t | x_t) \int P (x_t| u_t, x_{t-1})Bel(x_{t-1}) ,dx_{t-1} &\text{by definition}\end{align}

where

  • Markov assumption:
    • if you know the current state xtx_t, then the probability of the current measurement ztz_t is independent of the past measurements and actions iti \le t.
    • similarly if you know xt1x_{t-1}, then previous observations and actions (it1i \le t - 1) have no bearing on xtx_t.
    • assumes environment is not changing over time
    • assumes noise of measurements are independent
    • no approximation errors in sensor/action models

Probabilistic Motion Models